EM78F734N

8-Bit Microcontroller

Product Specification

DOC. VERSION 0.3

ELAN MICROELECTRONICS CORP.

November 2013

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo

Copyright © 2013 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, TAIWAN 308 Tel: +886 3 563-9977 Fax: +886 3 563-9966 http://www.emc.com.tw

Korea:

ELAN Korea Electronics Company, Ltd.

301 Dong-A Building 632 Kojan-Dong, Namdong-ku Incheon City, KOREA Tel: +82 32 814-7730 Fax: +82 32 813-7730

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd. Flat A, 19F., World Tech Centre

95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

3F, SSMEC Bldg., Gaoxin S. Ave. I Shenzhen Hi-tech Industrial Park (South Area), Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

USA:

Elan Information Technology Group (U.S.A.) PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8225

Shanghai:

Elan Microelectronics Shanghai, Ltd.

#23, Zone 115, Lane 572, Bibo Rd. Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax:+86 21 5080-4600 elan-sh@elanic.com.cn

C	DNTENTS III	
1	General Description	- 1
2	Features	• 1
3	Pin Assignment	• 2
4	Pin Description	- 3
5	Block Diagram	- 5
6	Functional Description 6.1 Operational Registers	• 6
	6.2 Special Function Registers	5
	6.4 I/O Ports ······	32
	6.6 Interrupt	45
	6.7.1 Data EEPROM Control Register476.7.1.1 RB (EEPROM Control Register)476.7.1.2 RC (128 Bytes EEPROM Address)486.7.1.3 RD (256 Bytes EEPROM Data)48	7
	6.7.2 Programming Step / Example Demonstration486.7.2.1 Programming Step486.7.2.2 Example Demonstration Programs49	3
	6.8 Analog-to-Digital Converter (ADC) 6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7) 50 6.8.2 Bank 2 R5 AISR (ADC Input Select Register) 50 6.8.3 Bank 2 R6 ADCON (A/D Control Register) 51 6.8.4 Bank 2 R7 ADOC (A/D Offset Calibration Register) 52 6.8.5 ADC Data Buffer (ADDH, ADDL/R8, R9) 52 6.8.6 A/D Sampling Time 52 6.8.7 A/D Conversion Time 53 6.8.8 A/D Operation during Sleep Mode 53 6.8.9 Programming Steps/Considerations 54 6.8.9.1 Programming Steps 54 6.8.9 Timer/Counter 1 54 6.12 Oscillator 54 6.12.1 Oscillator Modes 59 6.12.2 Internal RC Oscillator Mode 50) 2 2 2 3 3 4 5 5 6 57 59

Contents

			ψ
	6.13	Code Option Register ······	60
		6.13.1 Code Option Register (Word 0)	60
		6.13.2 Code Option Register (Word 1)	61
		6.13.3 Customer ID Register (Word 2)	62
	6.14	Power-on Considerations	63
	6.15	External Power-on Reset Circuit	63
	6.16	Residue-Voltage Protection	64
	6.17	Instruction Set	65
_		ing Diagrams	
7	Tim	ing Diagrams ······	68
8	۸he	olute Maximum Ratings	60
0	AD2		
9	DC I	Electrical Characteristics	~ •••••69
•	9.1	Data EEPROM Electrical Characteristics	
	9.2	Program Flash Memory Electrical Characteristics	
	9.3	A/D Converter Characteristics	
10	AC I	Electrical Characteristics	72
_	_	kage Type	
Α	Pac	kage Type	73
в	Deel	kage Information	74
D		EM78F734ND16 300mil······	/4
	B.1	EM78F734ND16 300mil	
	B.2	EM78F734NSO16 300ml	
	B.3	EM78F734NSS16 150mil	
	B.4		
	B.5	EM78F734NSO18 300mil	
	B.6	EM78F734ND20 300mil	
	B.7	EM78F734NSO20 300mil	
С	Qua	lity Assurance and Reliability	
5	G .1	Address Trap Detect	۹۱
	0.1	Auress Hap Delect	01

LAN

..

Specification Revision History

Doc. Version	Revision Description	Date
0.1	Initial version	2013/08/02
0.2	1. Modify operating voltage from 2.7V~5.5V to 2.2V~5.5V	2013/09/24
0.3	1.Modify block diagram 2.Modify pin assignment figure	2013/11/05

1 General Description

The EM78F734N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS technology and high noise immunity. It has an on-chip 4K×13-bit Electrical Flash Memory and 128×8-bit In-system programmable EEPROM. It provides three protection bits to prevent intrusion of user's Flash memory code.

With its enhanced Flash-ROM feature, the EM78F734N provides a convenient way of developing and verifying user's programs. Moreover, this Flash-ROM device offers the advantages of easy and effective program updates, using development and programming tools. Users can avail of the ELAN Writer to easily program their development codes.

2 Features

CPU Configuration

- 4K×13 bits Flash memory
- 144×8 bits on-chip registers (SRAM)
- 128 bytes In-system programmable EEPROM
- 8-level stacks for subroutine nesting

I/O Port Configuration

- Three bidirectional I/O ports
- Wake-up port : P6
- 12 Programmable pull-down I/O pins
- Eight programmable pull-high I/O pins
- Four programmable open-drain I/O pins
- External interrupt : P60

Operating Voltage Range:

- 2.2V~5.5V @ 40°C ~85°C (Industrial)
- 2.2V~5.5V @ 0°C ~70°C (Commercial)
- Operating frequency range (base on two clocks):
 - IRC Drift Rate (Vdd @ 3.3V)

Internal RC	Drift Rate					
Frequency	Temperature (-10°C+40°C)	Process	Total			
455kHz	±1%	±1%	±2%			
1 MHz	±1%	±1%	±2%			
4 MHz	±1%	±1%	±2%			
8 MHz	±1%	±1%	±2%			

IRC Drift Rate (Temperature: -10°C+40°C)

Internal RC	Drift Rate						
Frequency	Voltage (3.0~3.6V)	Process	Total				
455kHz	±1%	±1%	±2%				
1 MHz	±1%	±1%	±2%				
4 MHz	±1%	±1%	±2%				
8 MHz	±1%	±1%	±2%				

- One 16-bit Timer/Counter
 - TC1 : Timer/Counter/Capture
- One 8-bit Timer/Counter
 - TC3 : Timer/Counter/PDO (Programmable Divider Output) / PWM (Pulse Width Modulation)
- Eight available interrupts:
 - Internal interrupt: 4
 - External interrupt: 4
- Seven channels Analog-to-Digital Converter with 12-bit resolution
- Peripheral Configuration
 - 8-bit real Timer Clock/Counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
 - Power down (Sleep) mode
 - Four programmable Level Voltage Reset (LVR) (LVR) : 3.3V, 3.0V, 2.6V, and 2.0V (POR)
 - Three security registers to prevent intrusion of Flash memory codes
 - One configuration register to accommodate
 user's requirements
 - Two clocks per instruction cycle
 - High EFT immunity
 - Two sub-frequencies; 128kHz and 16kHz, the 16kHz is provided by dividing the 128kHz
- Single instruction cycle commands
- Programmable free running Watchdog Timer
- Package Type:
 - 16-pin DIP 300mil : EM78F734ND16
 - 16-pin SOP 300mil : EM78F734NSO16
 - 16-pin SSOP 150mil : EM78F734NSS16
 - 18-pin DIP 300mil : EM78F734ND18
 - 18-pin SOP 300mil : EM78F734NSO18
 - 20-pin DIP 300 mil : EM78F734ND20
 - 20-pin SOP 300mil : EM78F734NSO20
- **Note:** These are Green Products which do not contain hazardous substances.

3 Pin Assignment

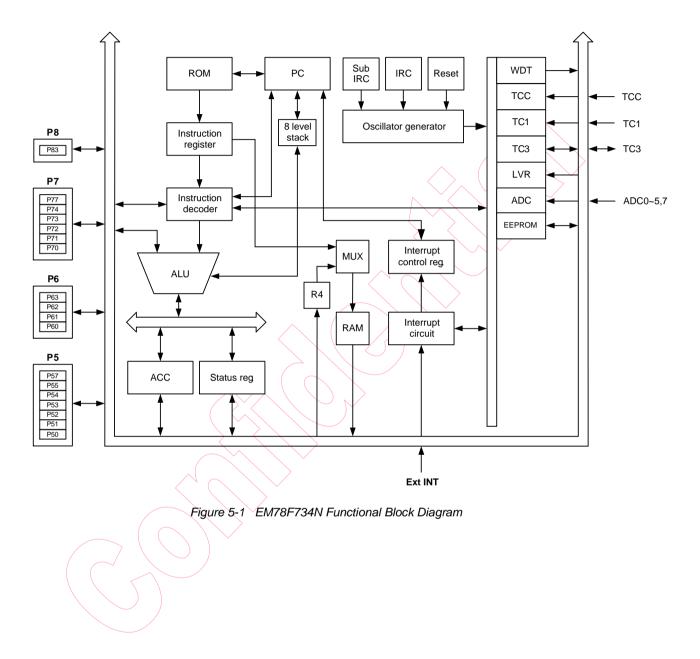
Figure 3-3 EM78F734ND20/SO20

4 Pin Description

Table 1 EM78F734N Pin Description

Legend: CMOS:	ST: Schmitt Trigger input CMOS output			AN: analog pin XTAL: Oscillation pin for crystal / resonator
Name	Function	Input Type	Output Type	Description
P50/VREF	P50	ST	CMOS	Bidirectional I/O pin with programmable pull-down
P50/VREF	VREF	AN	-	ADC external voltage reference
P51	P51	ST	CMOS	Bidirectional I/O pin with programmable pull-down
P52	P52	ST	CMOS	Bidirectional I/O pin with programmable pull-down
P53	P53	ST	CMOS	Bidirectional I/O pin with programmable pull-down
	P54	ST	CMOS	Bidirectional I/O pin
P54/RCOUT	RCOUT	Ι	CMOS	Clock output of internal RC oscillator Clock output of external RC oscillator (open-drain)
P55	P55	ST	CMOS	Bidirectional I/O pin
	P57	ST	CMOS	Bidirectional I/O pin
P57/TC3/AD7	ТС3	ST	$\bigcap $	Timer 3 input (Counter/Capture/Window) Timer 3 output (PDO/PWM/Buzzer)
	PDO	\sum	CMOS	Programmable divider output
	AD7	AN	X	ADC Input 7
	P60	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
P60/AD0//INT	AD0	AN	-	ADC Input 0
	7/INT	ST	-	External interrupt pin
P61/AD1	P61	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD1	AN	-	ADC Input 1

EM78F734N 8-Bit Microcontroller



(Continuation)

Name	Function	Input Type	Output Type	Description
P62/AD2	P62	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD2	AN	-	ADC Input 2
P63/AD3	P63	ST	CMOS	Bidirectional I/O pin with programmable pull-down, pull-high, open-drain, and pin change wake-up
	AD3	AN	-	ADC Input 3
P70	P70	ST	CMOS	Bidirectional I/O pin,pull-high
(DATA)	(DATA)	ST	CMOS	DATA pin for Writer programming
P71	P71	ST	CMOS	Bidirectional I/O pin, pull-high
(CLK)	(CLK)	ST	-	CLOCK pin for Writer programming
P72	P72	ST	CMOS	Bidirectional I/O pin, pull-high
	P73	ST	CMOS	Bidirectional I/O pin, pull-high
P73/AD4	AD4	AN	-	ADC Input 4
D74/704	P74	ST	CMOS	Bidirectional I/O pin
P74/TC1	TC1	ST	<u> </u>	Timer 1 input (Counter/Capture)
	P77	ST	CMOS	Bidirectional I/O pin
P77/TCC/AD5	TCC	ST	$\left(\right)$	Real Time Clock/Counter clock input
	AD5	AN		ADC Input 5
	P83	ST	CMOS	Bidirectional I/O pin
P83//RESET (/RESET)	/RESET	ST	\searrow	Internal pull-high reset pin
()	(/RESET)	ST	> -	/RESET pin for Writer programming
VDD	VDD	Power	_	Power
(VDD)	VDD	Power	_	VDD for Writer programming
VSS	VSS	Power	_	Ground
(VSS)	VSS	Power	_	VSS for Writer programming

5 Block Diagram

6 Functional Description

6.1 Operational Registers

6.1.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select Register (R4).

6.1.2 R1 (Timer Clock/Counter)

R1 is incremented by an external signal edge, which is defined by TE bit (CONT-4) through the TCC pin, or by the instruction cycle clock. It is writable and readable as any other registers. It is defined by resetting PSTE (CONT-3).

The prescaler is assigned to TCC, if the PSTE bit (CONT-3) is reset. The contents of the prescaler counter are cleared only when the TCC register is written with a value.

6.1.3 R2 (Program Counter) and Stack

Depending on the device type, R2 and hardware stack are 10-bit wide. The structure is depicted in Figure 6-1.

The configuration structure generates 4K×13 bits on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 1024 words long.

R2 is set as all "0"s when under a reset condition.

"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows PC to go to any location within a page (1K).

"CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.

"LJMP" instruction allows direct loading of the program counter bits (A0~A11). Thus, "LJMP" allows the PC to go to any location within 4K (2¹²).

"LCALL" instruction loads the program counter bits (A0~A11), and PC+1 are pushed onto the stack. Thus, the subroutine entry address can be located anywhere within 4K (2^{12}) .

"RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.

"ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.

"MOV R2, A" allows loading an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits of the PC remain unchanged.

Any instruction except "ADD R2,A" that is written to R2 (e.g. "MOV R2, A", "BC R2, 6") will cause the ninth bit and the tenth bit (A8~A9) of the PC to remain unchanged.

All instructions are single instruction cycle (fclk/2) except for the instructions that would change the contents of R2 and "LCALL", "LJMP", "TBRD" instruction. The "LCALL", "LJMP" and "TBRD" instructions need two instruction cycles.

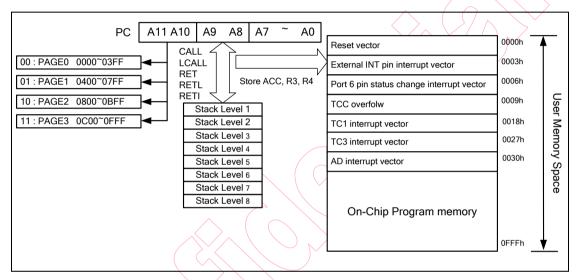


Figure 6-1 Program Counter Organization

	Register Bank 0	Register Bank 1	Register Bank 2	Register Bank 3	Control Register
Addres	S				
01	R1 (TCC Buffer)				\wedge
02	R2 (PC)				$\langle \rangle$
03	R3 (STATUS)]			
— 04	R4 (RSR,bank select)	R4(7,6) (0,1)	(1,0)	(1,1)	$\langle \rangle \rangle$
05	R5 (Port 5 /IO data)	R5 (Timer 1 Control)	R5 (ADC Input Select Register)	R5 (Reserve)	IOC5 (Port 5 I/O control)
06	R6 (Port 6 I/O data)	R6 (Timer 1 data Buffer A)	R6 (ADC Control Register)	R6 (TBHP: Table Point Register)	IOC6 (Port 6 I/O control)
07	R7 (Port 7 I/O data)	R7 (Timer 1 data Buffer B)	R7 (ADC Offset Calibration Register)	R7 (Reserve)	IOC7 (Port 7 I/O control)
08	R8 (Port 8 I/O data)	R8 (Oscillator Control)	R8 (AD high 8-bits data buffer)	R8 (Reserve)	IOC 8(Port 8 I/O control)
09	R9 (TBLP: Table Point Register)	R9 (Timer 2 Data Buffer A)	R9 (AD low 2-bits data buffer)	R9 (Reserve)	IOC9 (Reserved)
0A	RA (Wake control Register)	RA (Timer 2 Data Buffer B)	RA (Reserve)	RA (Reserve)	IOCA (WDT control)
0B	RB (EEPROM control Register)	RB (Reserve)	RB (Reserve)	RB (Reserve)	IOCB (Pull Down Control 2)
0C	RC (EEPROM address Register)	RC (Reserve)	RC (Reserve)	RC (Reserve)	IOCC (Open Drain Control 1)
0D	RD (EEPROM data Register)	RD (Reserve)	RD (Reserve)	RD (Timer 3 Control)	IOCD (Pull High Control 2)
0E	RE (Mode Select Register)	RE (Reserve)	RE (Reserve)	RE (Timer 3 data buffer)	IOCE (Interrupt Mask 2)
0F	RF (Interrupt Status Flag 1)	RF (Interrupt Status Flag 2)	RF (Pull High Control 1)	RF (Pull Down Control 1)	IOCF (Interrupt Mask 1)
10 : 1F		16-Byte C	ommon Register		
20 : 3F	Bank 0 32x8	Bank 1 32x8	Bank 2 32x8	Bank 3 32x8	
		Figure 6-2 D	ata Memory Conf	iguration	

6.1.4 R3 (Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	Т	Р	Z	DC	С

Bit 7 ~ Bit 5: Not used, set to "0" at all time

Bit 4 (T): Time-out bit

Set to "1" with the "SLEP" and "WDTC" commands, or during power up and reset to "0" by WDT time-out.

Bit 3 (P): Power down bit

Set to "1" during power on or by a "WDTC" command and reset to "0" by a "SLEP" command.

Bit 2 (Z): Zero flag

Set to "1" if the result of an arithmetic or logic operation is zero.

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

6.1.5 R4 (RAM Select Register)

- Bits 7 ~ 6: Used to select Bank 0 ~ Bank 3
- Bits 5~0: Used to select registers (Address: 00~3F) in indirect addressing mode.

See the data memory configuration in Figure 6-2.

6.1.6 Bank 0 R5 ~ R8 (Port 5 ~ Port 8)

R5 ~ R7 are I/O registers.

6.1.7 Bank 0 R9 TBPTL (Low byte of Table Pointer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RBit 7	RBit 6	RBit 5	RBit 4	RBit 3	RBit 2	RBit 1	RBit 0

6.1.8 Bank 0 RA (Wake- up Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	ICWE	ADWE	EXWE	-	-	—	-

Bit 7: Not used, set to "0" at all time

Bit 6 (ICWE): Port 6 input status change wake-up enable bit

- 0 : Disable Port 6 input status change wake-up
- 1 : Enable Port 6 input status change wake-up

Bit 5 (ADWE): ADC wake-up enable bit

- 0 : Disable ADC wake-up
- 1 : Enable ADC wake-up

When ADC completed status is used to enter the interrupt vector or to wake up the EM78F734N from sleep, with A/D conversion running, the ADWE bit must be set to "Enable".

- Bit 4 (EXWE): External wake-up enable bit
 - 0 : Disable External /INT pin wake-up
 - 1 : Enable External /INT pin wake-up

Bits 3~0: Not used, set to "0" at all time

6.1.9 Bank 0 RB (EEPROM Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RD	WR	EEWE	EEDF	EEPC	-	-	-

Bit 7 (RD): Read control register

- 0 : Does not execute EEPROM read
- 1 : Read EEPROM content, (RD can be set by software, RD is cleared by hardware after Read instruction is completed)

Bit 6 (WR): Write control register

- 0 : Write cycle to the EEPROM is completed.
- 1 : Initiate a write cycle, (WR can be set by software, WR is cleared by hardware after Write cycle is completed)

Bit 5 (EEWE): EEPROM Write Enable bit.

- 0 : Prohibit write to the EEPROM
- 1 : Allows EEPROM write cycles

Bit 4 (EEDF): EEPROM Detective Flag

- **0** : Write cycle is completed
- 1 : Write cycle is unfinished

Bit 3 (EEPC): EEPROM power-down control bit

- **0** : Switch off the EEPROM
- 1: EEPROM is operating
- Bits 2 ~ 0: Not used, set to "0" at all time

6.1.10 Bank 0 RC (EEPROM Address)

_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		EE_A6	EE_A5	EE_A4	EE_A3	EE_A2	EE_A1	EE_A0

Bits 6 ~ 0: EEPROM address

6.1.11 Bank 0 RD (EEPROM Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EE_D7	EE_D6	EE_D5	EE_D4	EE_D3	EE_D2	EE_D1	EE_D0

Bits 7 ~ 0: EEPROM data

6.1.12 Bank 0 RE (CPU Operating Control Register)

 TIMERSC CPUS IDLE- Bit 7: Not used, set to "0" at all time Bit 6 (TIMERSC): TCC, TC2, TC3 clock source select 0 : Fs. Fs: sub frequency for WDT internal RC time base 1 : Fm. Fm: main-oscillator clock Bit 5 (CPUS): CPU Oscillator Source Select 0 = Sub-oscillator (fs) 1 = Main oscillator (fsc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode Moreal mode Fm: stop Fs: oscillation CPU: using Fm: stop Fs: oscillation C	Bit							
Bit 6 (TIMERSC): TCC, TC2, TC3 clock source select 0 : Fs. Fs: sub frequency for WDT internal RC time base 1 : Fm. Fm: main-oscillator clock Bit 5 (CPUS): CPU Oscillator Source Select 0 = Sub-oscillator (fs) 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="0"+SLEP instruction → Idle mode CPU Operation Mode Sleep mode ⁽¹⁾ Sleep mode ⁽¹⁾ Fs: stop Fs: stop Fs: stop Fs: stop Fs: stop CPU: using Fm Sleep mode ⁽¹⁾ Sleep mode ⁽¹⁾ Fs: oscillation CPU: using Fm Sleep mode ⁽¹⁾ Sleep mode ⁽¹⁾ Fs: oscillation CPU: using Fs: oscillation								
 0 : Fs. Fs: sub frequency for WDT internal RC time base 1 : Fm. Fm: main-oscillator clock Bit 5 (CPUS): CPU Oscillator Source Select 0 = Sub-oscillator (fs) 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode Sleep mode⁽¹⁾ +SLEP oscillation CPU using Fm stop Fs: stop CPU : stop +SLEP +S								
 1 : Fm. Fm: main-oscillator clock Bit 5 (CPUS): CPU Oscillator Source Select 0 = Sub-oscillator (fs) 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode Mormal mode Fm: socillation Fs: oscillation CPU: using Fm : stop Fs: stop CPU: stop Fm: stop Fs: stop CPU: stop IDLE=0 Steep mode⁽¹⁾ Fs: oscillation CPU: using Fs : oscil								
Bit 5 (CPUS): CPU Oscillator Source Select 0 = Sub-oscillator (fs) 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode • CPU Operation Mode • Sleep mode (*) • Sle								
 0 = Sub-oscillator (fs) 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. i IDLE="0"+SLEP instruction → Sleep mode i IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode IDLE = 0 CPUS = 0 (PUS = 0	\geq							
 1 = Main oscillator (fosc) When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode CPU Operation Mode Mormal mode Fm : oscillation CPU : using Fm Sleep mode⁽¹⁾ Fs : sopl Fs : sopl CPU : using Fs CPU : using Fs 								
When CPUS=0, the CPU oscillator selects sub-oscillator and main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction \rightarrow Sleep mode 1 : IDLE="1"+SLEP instruction \rightarrow Idle mode • CPU Operation Mode • CPU Operation Mode • CPU is stop Fs: isop Fs: isop Fs: isop Fs: isop Fs: isop Fs: isop Fs: isop CPU: using Fs • Steep mode ⁽¹⁾ Fs: isop Fs: isop								
main oscillator is stopped. Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction \rightarrow Sleep mode 1 : IDLE="1"+SLEP instruction \rightarrow Idle mode • CPU Operation Mode • CPU Operation Mode • CPU Operation Mode • CPU Sillation CPU using Fm Sleep mode ⁽¹⁾ Fm : stop Fm : stop Fm : stop Fm : stop Fm : stop Fm : stop Fm : stop CPU : using Fm CPU : using Fm Sleep mode ⁽¹⁾ Fm : stop Fm : stop Fm : stop Fm : stop Fm : stop CPU : using Fm Sleep mode ⁽¹⁾ Fm : stop Fm : stop								
Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idele mode status SLEP instruction. 0 : IDLE="0"+SLEP instruction → Sleep mode 1 : IDLE="1"+SLEP instruction → Idle mode • CPU Operation Mode • CPU Operation Mode • CPU Seep mode ^(*) Fm: scillation CPU: using Fm Sleep mode ^(*) Fm: stop Fs: scillation CPU: using Fs Sleep mode ^(*) Fs: scillation CPU: using Fs	d th							
SLEP instruction. 0 : IDLE="0"+SLEP instruction \rightarrow Sleep mode 1 : IDLE="1"+SLEP instruction \rightarrow Idle mode • CPU Operation Mode • CPU Suspection CPU : using Fm • Sleep mode (') • Sleep mo								
 0: IDLE="0"+SLEP instruction → Sleep mode 1: IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode Mormal mode Fm: oscillation Fs: oscillation CPU: using Fm Sleep mode⁽¹⁾ Fm: stop Fs: stop CPU: stop UDLE = 0 +SLEP CPU: using Fs 	ıs ur							
1: IDLE="1"+SLEP instruction → Idle mode CPU Operation Mode Image: Sleep mode (*) Sleep mode (*) Fs: stop CPU: using Fm CPU: using Fs: oscillation	SLEP instruction.							
• CPU Operation Mode Image: Wakeup Normal mode Image: Wakeup Normal mode Image: Wakeup Fm: oscillation CPU: using Fm CPUs = 0 Image: Sleep mode (*) Wakeup Fm: stop Green mode Fs: stop Fm: stop CPU: using Fs Fs: oscillation CPU: using Fs CPU: using Fs	0 : IDLE=" 0 "+SLEP instruction \rightarrow Sleep mode							
• CPU Operation Mode Image: Wakeup Normal mode Image: Wakeup Normal mode Image: Wakeup Fm: oscillation CPU: using Fm CPUs = 0 Image: Sleep mode (*) Wakeup Fm: stop Green mode Fs: stop Fm: stop CPU: using Fs Fs: oscillation CPU: using Fs CPU: using Fs	1 : IDLE="1"+SLEP instruction \rightarrow Idle mode							
Normal mode RESET Normal mode Fm: oscillation Fm: oscillation Fs: oscillation CPU: using Fm CPUS = 0 IDLE = 0 CPUS = 1 Sleep mode (*) Green mode Fm: stop Fs: oscillation CPU: using Fs IDLE = 1 IDLE = 0 Fm: stop Fs: oscillation CPU: using Fs Value Value IDLE = 0 Fs: oscillation CPU: using Fs CPU: using Fs								
Normal mode Fm: oscillation Fs: oscillation CPU: using Fm IDLE = 0 + SLEP Sleep mode (*) Fm: stop Fs: stop CPU: using Fs IDLE = 0 + SLEP IDLE = 0 + SLEP IDLE = 1 IDLE = 1 + SLEP IDLE = 1 + SLEP IDLE = 1 + SLEP								
Normal mode Fm: oscillation Fs: oscillation CPU: using Fm IDLE = 0 + SLEP Sleep mode (*) Fm: stop Fs: stop CPU: using Fs IDLE = 0 + SLEP IDLE = 0 + SLEP IDLE = 1 IDLE = 1 + SLEP	_							
Wakeup Fs : oscillation CPU : using Fm IDLE = 0 + SLEP CPUS = 1 Sleep mode (*) Fm : stop Fs : stop CPU : using Fs IDLE = 1 + SLEP IDLE = 0 + SLEP Green mode Fm : stop Fs : oscillation CPU : using Fs IDLE = 0 + SLEP IDLE = 1 + SLEP								
IDLE = 0 + SLEP CPUS = 1 IDLE = 1 + SLEP IDLE = 0 + SLEP CPUS = 0 IDLE = 1 + SLEP IDLE = 0 + SLEP IDLE = 0 + SLEP								
+ SLEP CPUS = 1 CPUS = 0 + SLEP Sleep mode ^(*) Fm : stop Fs : stop CPU : stop IDLE = 0 + SLEP Idle mode Fm : stop Fs : oscillation CPU : using Fs + SLEP Wakeup CPU : using Fs								
Sleep mode (*) wakeup Green mode IDLE = 1 Idle mode Fm : stop Fm : stop Fm : stop Fs : oscillation CPU : stop IDLE = 0 CPU : using Fs wakeup								
Fm : stop Fm : stop Fm : stop Fs : stop Fs : oscillation Fs : oscillation CPU : stop IDLE = 0 + SLEP								
CPU : stop IDLE = 0 + SLEP CPU : using Fs wakeup CPU : stop								
+ SLEP								
(*) <u>only as WDT IRC is Fs.</u> If watchdog function is enabled before into sleep mode, Fs does not stop.								
Therefore, some circuits like timer/counter (Its clock source is Fs) must be disal before into sleep mode especially as corresponding interrupt is enabled.	hla							

Bits 3 ~ 0: Not used, set to "0" at all time

6.1.13 Bank 0 RF (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
_	ADIF	-	-	-	EXIF	ICIF	TCIF			
Note: "1"	means with	interrupt re	quest "	0 " means r	no interrupt o	occurs				
Bit 7:	Not	Not used, set to " 0 " at all time								
Bit 6 (ADII		Interrupt flag for analog to digital conversion. Set when AD conversion is completed, reset by software.								
Bits 5~3:	Not	Not used, set to " 0 " at all time								
Bit 2 (EXIF	•	External interrupt flag. Set by a falling edge on /INT pin, reset by software.								
Bit 1 (ICIF)		Port 6 input status change interrupt flag. Set when Port 6 input changes, reset by software.								
Bit 0 (TCIF	•	TCC overflow interrupt flag. Set when TCC overflows, reset by software.								
Bank 0 RF	can be cle	ared by ins	struction bu	it cannot be	e set.					

IOCF is the interrupt mask register.

NOTE

The result of reading Bank 0 RF is the "logic AND" of Bank 0 RF and IOCF.

6.1.14 R10 ~ R3F

These are all 8-bit general-purpose registers.

6.1.15 Bank 1 R5 TC1CR (Timer 1 Control)

]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	TC1CAP	TC1S	TC1M	TC1ES	TC1MOD	TCK1CK2	TC1CK1	TC1CK0

Bit 7 (TC1CAP): Software capture control

0: Software capture disable

1: Software capture enable

Bit 6 (TC1S): Timer/Counter 1 start control

- 0: Stop and clear the counter
- 1: Start

Bit 5 (TC1M): Timer/Counter 1 mode select

- 0: Timer/Counter 1 mode
- 1 : Capture mode

Bit 4 (TC1ES): TC1 signal edge

- **0** : increment if the transition from low to high (rising edge) takes place on the TC1 pin.
- 1 : increment if the transition from high to low (falling edge) takes place on TC1 pin.
- Bit 3 (TC1MOD): Timer Operation Mode Selection Bit
 - 0: Two 8-bit timers
 - 1: Timer 1 and 2 are cascaded as one 16-bit timer. The corresponding control register of 16-bit timer is from timer 1. TC1DA and TC1DB are low byte. TC2DA and TC2DB are high byte.

	TC1CK2	к2 ТС1СК1 ТС1СК0		Clock Source	Resolution 8 MHz	Max. time 8 MHz	Resolution 16kHz	Max. time 16kHz
				Normal	F _c =8M	F _c =8M	F _c =16K	F _c =16K
	0	0) 0 <	Fc/2 ²³	1.05s	19.1hr	145hr	9544hr
	0	0		Fc/2 ¹³	1.024ms	67.11s	512ms	33554.432s
	0	1	0	Fc/2 ⁸	32µs	2.097s	16ms	1048.576s
	0	1		$F_{\rm C}/2^3$	1µs	65.536ms	0.5ms	32768ms
	1	0	0	$F_{\rm C}/2^2$	0.5µs	32.768ms	0.25ms	16384ms
/		0) 1	F _C /2	0.25µs	16.384ms	125µs	8192ms
		1	0	Fc	125ns	8.192ms	0.0625ms	4096ms
		1	1	External clock (TC1 pin)	-	-	-	-

Bit 2 ~ Bit 0 (TC1CK2 ~ TC1CK0): Timer/Counter 1 clock source select

Bits 1 ~ 0: Not used, set to "0" at all time.

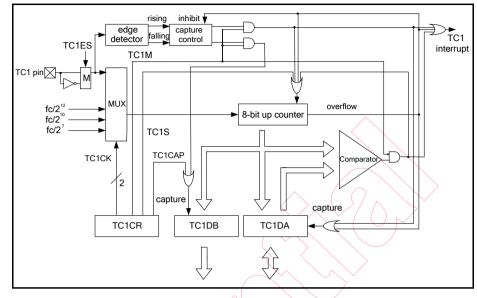


Figure 6-4 Timer/Counter 1 Configuration

In Timer mode, counting up is performed using the internal clock. When the contents of the up-counter matched with the TC1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TC1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.

In Counter mode, counting up is performed using the external clock input pin (TC1 pin) and either rising or falling edge can be selected by TC1ES, **but both edges cannot be used**. When the contents of the up-counter matched with the TC1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into the TC1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.

In Capture mode, the pulse width, period and duty of the TC1 input pin are measured in this mode, which can be used to decode the remote control signal. The counter is set as free running by the internal clock. On a rising (falling) edge of TC1 pin input, the contents of the counter is loaded into TC1DA, then the counter is cleared and interrupt is generated. On a falling (rising) edge of the TC1 pin input, the contents of the counter are loaded into TC1DB. The counter is still counting, on the next rising edge of the TC1 pin input, the contents of the counter are loaded into TC1DA, the counter is cleared and interrupt is generated again. If an overflow occurs before an edge is detected, the FFH is loaded into TC1DA and the overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TC1DA value is FFH. After an interrupt (capture to TC1DA or overflow detection) is generated, capture and overflow detection are halted until TC1DA is read out.

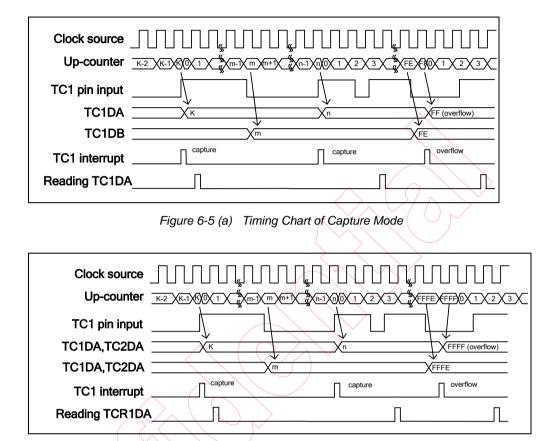


Figure 6-5 (b) Timing Chart of Capture Mode

6.1.16 Bank 1 R6 TC1DA (Timer 1 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0

Bit 7 ~ Bit 0 (TC1DA7 ~ TC1DA0): Data buffer of 8-bit Timer/Counter 1.

6.1.17 Bank 1 R7 TC1DB (Timer 1 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0

Bit 7 ~ Bit 0 (TC1DB7 ~ TC1DB0): Data buffer of 8-bit Timer/Counter 1.

6.1.18 Bank 1 R8 OSCR (Oscillator Control)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RCM1	RCM0	-	-	-	-	_	-

Bit 7 ~and Bit 6 (RCM1, RCM0): IRC mode select bits

Writer Trim IRC	Bank1	R8<7,6>	Frequency
	RCM1	RCM0	Frequency
	0	0	4 MHz
4 MHz	0	1	1 MHz
4 1011 12	1	0	8 MHz
	1	1	455kHz
	0	0	4 MHz
1 MHz	0	1	1 MHz
	1	0	8 MHz
	1	1	455kHz
	0	0	4 MHz
8 MHz	0	t	1 MHz
	1	0	8 MHz
	1	1	455kHz
	0	0	4 MHz
455kHz	0	1	1 MHz
400KHZ	\mathbf{h}	0	8 MHz
	1	1	455kHz

NOTE

■ BANK1 R8<7,6 > of the initialized values are kept the same as WORD 1<3,2>.

- After A Frequency switches to B Frequency, F734N needs to hold some stable time on B frequency.
 - **Ex:** Writer trim IRC 4 MHz \rightarrow BANK1 R8<7,6> set to "10" \rightarrow holds 3 μ s \rightarrow F734N works on 8 MHz \pm 10%.

Code Option Word 1 COBS=0:

The R8<7,6 > of the initialized values will remain the same as Word 1<3,2>.

The R8<7,6 > cannot change frequency.

Code Option Word 1 COBS=1:

The R8<7,6 > of the initialized values will remain the same Word as 1<3,2>.

The R8<7,6> can change when user wants to work on other IRC frequency.

6.1.19 Bank 1 R9 TC2DA (Timer 2 Data Buffer A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0

Bits 7~0 (TC2DA7~ TC2DA0): Data buffer of 8-bit Timer/Counter 2.

6.1.20 Bank 1 RA TC2DB (Timer 2 Data Buffer B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0

Bit 7 ~ Bit 0 (TC2DB7 ~ TC2DB0): Data buffer of 8-bit Timer/Counter 2.

6.1.21 Bank 1 RB ~RE

These are reserved registers.

6.1.22 Bank 1 RF (Interrupt Status Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	TCIF3		TCIF1	-	-	-

Note: "1" means with interrupt request "0" means no interrupt occurs

Bits 7~6: Not used, set to "0" at all time

Bit 5 (TCIF3): 8-bit Timer/Counter 3 interrupt flag. Interrupt flag is cleared by software. Bit 4: Not used, set to "0" at all time

Bit 3 (TCIF1): 8-bit Timer/Counter 1 interrupt flag. Interrupt flag is cleared by software.

Bits 2~0: Not used, set to "0" at all time

Bank 1 RF can be cleared by instruction but cannot be set.

IOCE is the interrupt mask register.

NOTE

The result of reading Bank 1 RF is the "logic AND" of Bank 1 RF and IOCE.

6.1.23 Bank 2 R5 AISR (ADC Input Select Register)

The AISR register for ADC pins act as analog input or digital I/O.

0 : Dis 1 : Ena Not us AD cor 0 : Dis 1 : Ena AD cor 0 : Dis	able ADC7 ed, set to " nverter ena able ADC5 able ADC5 nverter ena	7, P57 funct to function 0 " at all tim ble bit of P 5, P77 funct to function ble bit of P	tions as I/C as analog ne 777 pin tions as I/C as analog	input pin	ADE1	ADEO			
0 : Dis 1 : Ena Not us AD cor 0 : Dis 1 : Ena AD cor 0 : Dis	able ADC7 able ADC7 ed, set to " nverter ena able ADC5 able ADC5 nverter ena	7, P57 funct to function 0 " at all tim ble bit of P 5, P77 funct to function ble bit of P	tions as I/C as analog ne 777 pin tions as I/C as analog	input pin					
 Ena Not us AD cor Dis Ena AD cor O : Dis 	able ADC7 ed, set to " nverter ena able ADC5 able ADC5 nverter ena	to function 0 " at all tim ble bit of P , P77 funct to function ble bit of P	as analog ne 177 pin tions as I/C nas analog	input pin		, ,			
Not us AD cor 0 : Dis 1 : Ena AD cor 0 : Dis	ed, set to " nverter ena able ADC5 able ADC5 nverter ena	0 " at all tim ble bit of P i, P77 funct to function ble bit of P	ne 177 pin tions as I/C as analog) pin		<i>,</i>			
AD cor 0 : Dis 1 : Ena AD cor 0 : Dis	able ADC5 able ADC5 able ADC5 nverter ena	ble bit of P 5, P77 funct to function ble bit of P	277 pin tions as I/C as analog	$\cdot \land \land$	$\langle 0 \rangle$	~			
0 : Dis 1 : Ena AD cor 0 : Dis	able ADC5 able ADC5 nverter ena	, P77 funct to function ble bit of P	tions as I/C as analog	$\cdot \land \land$					
1 : Ena AD cor 0 : Dis	able ADC5 nverter ena	to function ble bit of P	as analog	$\cdot \land \land$					
AD cor 0 : Dis	nverter ena	ble bit of P	\land	input pin	~				
0 : Dis			73 pin	\backslash					
	able ADC4		- F(\rightarrow					
1 : Ena		0 : Disable ADC4, P73 functions as I/O pin							
	able ADC4	to function	as analog	input pin					
AD cor	verter ena	ble bit of P	63 pin.						
0 : Dis	able ADC3	, P63 funct	tions as I/C	pin					
1 : Ena	able ADC3	to function	as analog	input pin					
AD cor	nverter ena	ble bit of P	'62 pin.						
0 : Dis	able ADC2	, P62 funct	tions as I/C	pin					
1 : Ena	able ADC2	to function	as analog	input pin					
AD cor	nverter ena	ble bit of P	61 pin						
0 : Dis	able ADC1	, P61 funct	tions as I/C	pin					
1 : Ena	able ADC1	to function	as analog	input pin					
AD cor	nverter ena	ble bit of P	60 pin						
0 : Dis	able ADC0	, P60 funct	tions as I/C	pin					
		to function	as analog	input pin					
	0 : Dis 1 : Ena AD cor 0 : Dis	 0 : Disable ADC1 1 : Enable ADC1 AD converter ena 0 : Disable ADC0 	 0 : Disable ADC1, P61 func 1 : Enable ADC1 to function AD converter enable bit of P 0 : Disable ADC0, P60 func 	 1 : Enable ADC1 to function as analog AD converter enable bit of P60 pin 0 : Disable ADC0, P60 functions as I/O 	 Disable ADC1, P61 functions as I/O pin 1 : Enable ADC1 to function as analog input pin 	 0 : Disable ADC1, P61 functions as I/O pin 1 : Enable ADC1 to function as analog input pin AD converter enable bit of P60 pin 0 : Disable ADC0, P60 functions as I/O pin 			

The following table shows the priority of P60/AD1//INT.

P60/AD1//INT Pin Priority						
High	Medium	Low				
/INT	AD1	P60				

6.1.24 Bank 2 R6 ADCON (A/D Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VREFS	CKR1	CKR0	ADRUN	ADPD	ADIS2	ADIS1	ADIS0

Bit 7 (VREFS): The input source of the Vref of the ADC.

- **0** : Vref of the ADC is connected to the Internal reference which is selected by Bank 2 R9<5,4>(default value), and the P50/VREF pin carries out the function of P50
- 1 : Vref of the ADC is connected to P50/VREF

Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The oscillator clock rate of ADC

CKR1/CKR0	Operation Mode	Max. Operation Frequency
00	F _{osc} /4	4 MHz
01	Fosc	1MHz
10	Fosc/16	8 MHz
11	F _{osc} /2	1 MHz

RCM[1:0]	Frequency (MHz)	Sample & Hold Timing
00	4	8 x T _{AD}
01		4 x T _{AD}
10	8	12 x T _{AD}
11	455k	2 x T _{AD}

Bit 4 (ADRUN): ADC starts to run

- **0** : Reset upon completion of AD conversion. This bit cannot be reset by software
 - 1 : A/D conversion is started. This bit can be set by software

Bit 3 (ADPD): ADC Power-down mode

- **0**: Switch off the resistor reference to save power even while the CPU is operating
- 1 : ADC is operating

Bits 2~0 (ADIS2~ADIS0): AD Input Select Bits

ADIS2	ADIS1	ADIS0	AD Input Pin
0	0	0	AD0
0	0	1	AD1
0	1	0	AD2
0	1	1	AD3
1	0	0	AD4
1	0	1	AD5
1	1	0	Reserve
1	1	1	AD7
	0 0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 0 1 0 1 1 0 0 0

6.1.25 Bank 2 R7 ADOC (A/D Offset Calibration Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	PDE	-	-

Bits 7~3: Not used, set to "0" at all time

Bit 2 (PDE): 1/2 VDD Power Detect Enable bit

0 : Disable Power Detect (Default)

1 : Enable Power Detect

PDE	ADIS2	ADIS1	ADIS0	AD Input Select
1	-	-	<	1/2VDD
0	×	×	×	ADx

Bits 1~0: Not used, set to "0" at all time

6.1.26 Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4

When the A/D conversion is completed, the result of high 8-bit is loaded into the ADDH. The ADRUN bit is cleared, and the ADIF is set. R8 is read only.

6.1.27 Bank 2 R9 ADDL (AD Low 4-Bit Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	->	IRVS1	IRVS0	ADD3	ADD2	ADD1	ADD0

Bits 7 ~ 6: Not used, set to "0" at all time

Bits 5 ~ 4 (IRVS1~IRVS0): Internal Reference Voltage Selection.

	IRVS[1:0]	Reference Voltage
	00	AVDD
	01	4 V
\sum	10	3 V
	11	2.5 V

Bits 3 ~ 0:

AD low 4-bit data buffer.

6.1.28 Bank 2 RA ~ RE

These are reserved registers.

6.1.29 Bank 2 RF (Pull-high Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	/PH73	/PH72	/PH71	/PH70

Bits 7 ~ 4: Not used, set to "0" at all time.

Bit 3 (/PH73): Control bit used to enable pull-high of the P73 pin

- 0 : Enable internal pull-high
- 1 : Disable internal pull-high

Bit 2 (/PH72): Control bit used to enable pull-high of the P72 pin.

Bit 1 (/PH71): Control bit used to enable pull-high of the P71 pin.

Bit 0 (/PH70): Control bit used to enable pull-high the P70 pin.

The RF Register is both readable and writable.

6.1.30 Bank 3 R5

Reserved Register

6.1.31 Bank 3 R6 TBPTH (High Byte of Table Pointer Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MLB	0	0	0	RBit 11	RBit 10	RBit 9	RBit 8

Bit 7 (MLB): Take MSB or LSB at machine code.

Bits 6 ~ 4: Not used. Set to "0" at all time.

Bits 3 ~ 0: Table Pointer Address Bits 11~8.

6.1.32 Bank 3 R7~RC

Reserved Registers

6.1.33 Bank 3 RD TC3CR (Timer 3 Control)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TC3FF1	TC3FF0	TC3S	TC3CK2	TC3CK1	TC3CK0	TC3M1	TC3M0

Bit 7 ~ Bit 6 (TC3FF1 ~ TC3FF0): Timer/Counter 3 flip-flop control

TC3FF1	TC3FF0	Operating Mode
0	0	Clear
0	1	Toggle

1	0	Set
1	1	Reserved

Bit 5 (TC3S): Timer/Counter 3 start control

0: Stop and clear the counter

1 : Start

Bit 4 ~ Bit 2 (TC3CK2 ~ TC3CK0): Timer/Counter 3 clock source select

TC3CK2	TC3CK1	тсзско	Clock Source	Resolution	Max. Time
TUSUNZ	ICSCKI	ICSCRU	Normal	Fc=8M	Fc=8M
0	0	0	Fc/2 ¹¹	250 µs	64 ms
0	0	1	Fc/2 ⁷	16 µs	4 ms
0	1	0	Fc/2⁵	4 µs	1 ms
0	1	1	Fc/2 ³	1 µs	255 µs
1	0	0	Fc/2 ²	500 ns	127.5 µs
1	0	1	Fc/2 ¹	250 ns	63.8 µs
1	1	0	Fc	125 ns	31.9 µs
1	1	1	External clock (TC3 pin)	-	-

Bit 1 ~ Bit 0 (TC3M1 ~ TC3M0): Timer/Counter 3 operating mode select

TC3M1	TC3M0	Operating Mode			
0	0	Timer/Counter			
0	$\langle \cdot , \cdot \rangle$	Reserved			
1	0	Programmable Divider output			
1		Pulse Width Modulation output			

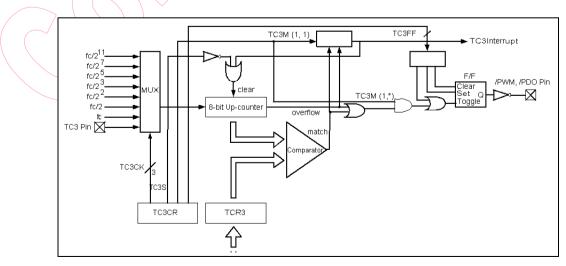


Figure 6-6 Timer / Counter 3 Configuration

In Timer mode, counting up is performed using internal clock (rising edge trigger). When the contents of the up-counter match the TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

In Counter mode, counting up is performed using external clock input pin (TC3 pin). When the contents of the up-counter match the TCR3, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. The F/F can be initialized by the program and it is initialized to "0" during reset. A TC3 interrupt is generated each time the /PDO output is toggled.

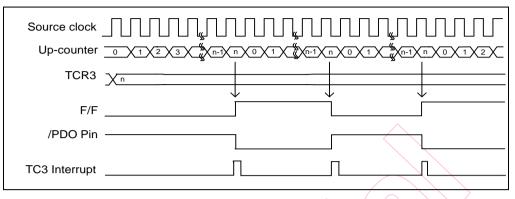


Figure 6-7 PDO Mode Timing Chart

In Pulse Width Modulation (PWM) Output mode, counting up is performed using internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F is toggled when a match is found. The counter continues counting, the F/F is toggled again when the counter overflows, after which the counter is cleared. The F/F output is inverted and output to /PWM pin. A TC3 interrupt is generated each time an overflow occurs. TCR3 is configured as a 2-stage shift register and, during output, will not switch until one output cycle is completed even if TCR3 is overwritten. Therefore, the output can be changed continuously. Also, the first time, TRC3 is shifted by setting TC3S to "1" after data is loaded to TCR3.

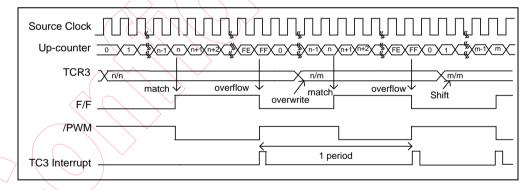


Figure 6-8 PWM Mode Timing Chart

6.1.34 Bank 3 RE TC3D (Timer 3 Data Buffer)

В	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
тс	3D7	TC3D6	TC3D5	TC3D4	TC3D3	TC3D2	TC3D1	TC3D0

Bit 7 ~ Bit 0 (TC3D7 ~ TC3D0): Data Buffer of 8-bit Timer/Counter 3

6.1.35 Bank 3 RF (Pull-down Control Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	/PD73	/PD72	/PD71	/PD70

Bit 7~ Bit 4: Not used, set to "0" at all time

Bit 3 (/PD73): Control bit used to enable the P73 pull-down pin

- 0 : Enable internal pull-down
- 1 : Disable internal pull-down
- Bit 2 (/PD72): Control bit used to enable the P72 pull-down pin
- Bit 1 (/PD71): Control bit used to enable the P71 pull-down pin
- Bit 0 (/PD70): Control bit used to enable the P70 pull-down pin

The RF Register is both readable and writable.

6.2 Special Function Registers

6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator, which is not an addressable register.

6.2.2 CONT (Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE	/int	TS	TE	PSTE	PST2	PST1	PST0

Bit 7 (INTE): INT signal edge

0: interrupt occurs at the rising edge of the INT pin

1 ; interrupt occurs at the falling edge of the INT pin

Bit 6 (/INT): Interrupt Enable flag

0 : masked by DISI or hardware interrupt

1 : enabled by ENI/RETI instructions

Bit 5 (TS): TCC signal source

0 : internal instruction cycle clock

- 1 : transition on TCC pin
- Bit 4 (TE): TCC signal edge
 - 0 : increment if a transition from low to high takes place on TCC pin
 - 1 : increment if a transition from high to low takes place on TCC pin

Bit 3 (PSTE): Prescaler enable bit for TCC

0 : prescaler disable bit, TCC rate is 1:1

1 : prescaler enable bit, TCC rate is set as Bit 2~Bit 0

Bit 2 ~ Bit 0 (PST 2 ~ PST0): TCC prescaler bits

PST2	PST1	PST0	TCC Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

CONT register is both readable and writable.

6.2.3 IOC5 ~ IOC8 (I/O Port Control Register)

A value of "1" sets the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.

IOC5, IOC6 IOC7 and IOC8 registers are both readable and writable.

6.2.4 IOC9

Reserved registers

6.2.5 IOCA (WDT Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	EIS	-	-	PSWE	PSW2	PSW1	PSW0

Bit 7 (WDTE): Control bit used to enable the Watchdog timer

0 : Disable WDT

1 : Enable WDT

WDTE is both readable and writable.

Bit 6 (EIS): Control bit used to define the function of P60 (INT) pin

- 0: P60, bidirectional I/O pin
- **1** : INT, external interrupt pin. In this case, the I/O control bit of P60 (Bit 0 of IOC6) must be set to "**1**".

When EIS is "**0**", the path of /INT is masked. When EIS is "1", the status of /INT pin can also be read by way of reading Port 6 (R6).

EIS is both readable and writable.

Bits 5~4: Not used, set to "0" at all time

Bit 3 (PSWE): Prescaler enable bit for WDT

0 : prescaler disable bit, WDT rate is 1:1

1 : prescaler enable bit, WDT rate is set as Bit 0~Bit 2

Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits

PSW2	PSW1	PSW0	WDT Rate
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.2.6 IOCB (Pull-down Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/PD7	/PD6	/PD5	/PD4	/PD3	/PD2	/PD1	/PD0

Bit 7 (/PD7): Control bit used to enable pull-down of the of P63 pin

0 : Enable internal pull-down

1 : Disable internal pull-down

Bit 6 (/PD6): Control bit used to enable pull-down of the P62 pin Bit 5 (/PD5): Control bit used to enable pull-down of the P61 pin Bit 4 (/PD4): Control bit used to enable pull-down of the P60 pin Bit 3 (/PD3): Control bit used to enable pull-down of the P53 pin Bit 2 (/PD2): Control bit used to enable pull-down of the P52 pin Bit 1 (/PD1): Control bit used to enable pull-down of the P51 pin Bit 0 (/PD0): Control bit used to enable pull-down of the P50 pin The IOCB Register is both readable and writable.

6.2.7 IOCC (Open-drain Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	_	_	Ι	OD3	OD2	OD1	OD0

Bits 7 ~ 4: Not used, set to "0" at all time

Bit 3 (OD3): Control bit used to enable the open-drain output of P63 pin

- 0 : Disable open-drain output
- 1 : Enable open-drain output
- Bit 2 (OD2): Control bit used to enable the open-drain output of P62 pin
- Bit 1 (OD1): Control bit used to enable the open-drain output of P61 pin
- Bit 0 (OD0): Control bit used to enable the open-drain output of P60 pin

The IOCC Register is both readable and writable.

6.2.8 IOCD (Pull-high Control Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	_	-	/f <	/РНЗ	/PH2	/PH1	/PH0

Bits 7~4: Not used, set to "0" at all time

Bit 3 (/PH3): Control bit used to enable pull-high of the P63 pin.

0 : Enable internal pull-high

1 : Disable internal pull-high

Bit 2 (/PH2): Control bit used to enable pull-high of the P62 pin.

Bit 1 (/PH1): Control bit used to enable pull-high of the P61 pin.

Bit 0 (/PH0): Control bit used to enable pull-high of the P60 pin.

The IOCD Register is both readable and writable.

6.2.9 IOCE (Interrupt Mask Register 2)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	_	TCIE3		TCIE1		Ι	_

Bits 7~6: Not used, set to "0" at all time

- Bit 5 (TCIE3): Interrupt enable bit
 - 0 : Disable TCIF3 interrupt
 - 1 : Enable TCIF3 interrupt
- Bit 4: Not used, set to "0" at all time
- Bit 3 (TCIE1): Interrupt enable bit
 - 0: Disable TCIF1 interrupt
 - 1: Enable TCIF1 interrupt
- Bits 2~0: Not used, set to "0" at all time

6.2.10 IOCF (Interrupt Mask Register 1)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	ADIE	-	Ι	-	EXIE	ICIE	TCIE

- Bit 7: Not used, set to "0" at all time
- Bit 6 (ADIE): ADIF interrupt enable bit
 - 0 : Disable ADIF interrupt
 - 1 : Enable ADIF interrupt

When the ADC Complete is used to enter an interrupt vector or enter the next instruction, the ADIE bit must be set to "Enable".

- Bits 5 ~ 3: Not used, set to "0" at all time
- Bit 2 (EXIE): EXIF interrupt enable bit
 - 0: Disable EXIF interrupt
 - 1 : Enable EXIF interrupt
- Bit 1 (ICIE): ICIF interrupt enable bit
 - **0** : Disable ICIF interrupt
 - 1 : Enable ICIF interrupt
- Bit 0 (TCIE): TCIF interrupt enable bit
 - 0 : Disable TCIF interrupt
 - 1 : Enable TCIF interrupt

Individual interrupt is enabled by setting its associated control bit in the IOCF to "1".

Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. The IOCF register is both readable and writable.

6.3 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT respectively. The PST0~PST2 bits of the CONT register are used to determine the ratio of the prescaler of TCC. Likewise, the PSW0~PSW2 bits of the IOCA register are used to determine the WDT prescaler. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler will be cleared by the "WDTC" and "SLEP" instructions. Figure 6-9 depicts the circuit diagram of TCC/WDT.

R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be internal clock or external signal input (edge selectable from the TCC pin). If TCC signal source is from the internal clock, TCC will be incremented by 1 at Fc clock (without prescaler). As illustrated in Figure 6-9, selection of Fc depends on the bank 0 RE.6 <TIMERSC>. If TCC signal source is from external clock input, TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. TCC pin input time length (kept in High or low level) must be greater than 1CLK. The TCC will stop running when sleep mode occurs.

The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during normal mode by software programming. Refer to WDTE bit of IOCA register. With no prescaler, the WDT time-out period is approximately 16.5 ms¹ (one oscillator start-up timer period).

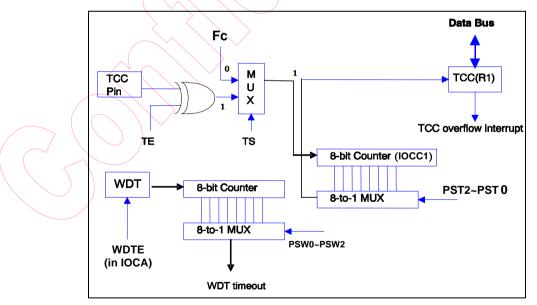
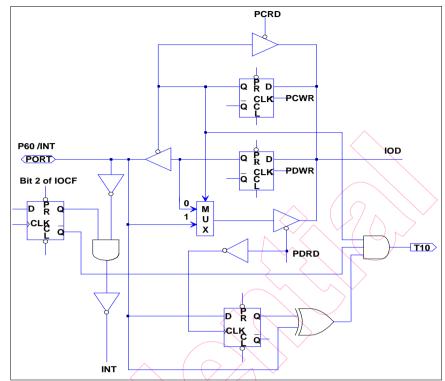


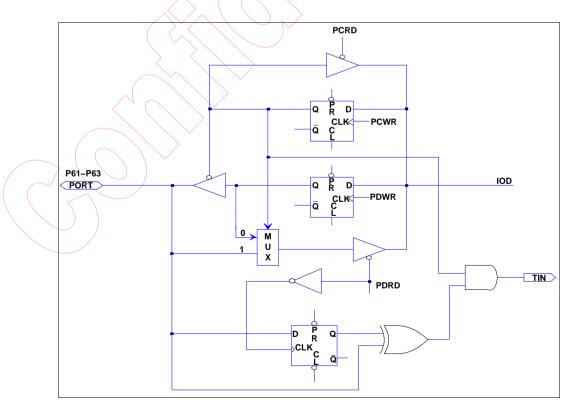
Figure 6-9 TCC and WDT Block Diagram


¹ VDD=5V, WDT time-out period = 16.5ms ± 5% VDD=3V WDT time-out period = 16.5ms ± 5%.

6.4 I/O Ports


The I/O registers, Ports 5, 6, 7 and 8, are bidirectional tri-state I/O ports. Port 6 / 7 can be pulled high internally by software. In addition, Port 6 can also have open-drain output by software. Input status change interrupt (or wake-up) function on Port 6 P50 ~ P53 and P60 ~ P63 and Port 7 pins can be pulled down by software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IQC5 ~ IOC8).

The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5, Port 6, Port 7 and Port 8 are shown in the following Figures 6-10, 6-11 (a), 6-11 (b), and Figure 6-12.



Note: Pull-down is not shown in the figure.

Figure 6-10 I/O Port and I/O Control Register Circuit for Ports 5, 6, 7

Note: Pull-high (down) and Open-drain are not shown in the figure. Figure 6-11 (a) I/O Port and I/O Control Register Circuit for P60 (INT)

Note: Pull-high (down) and Open-drain are not shown in the figure. Figure 6-11 (b) I/O Port and I/O Control Register Circuit for P61~P63, P83

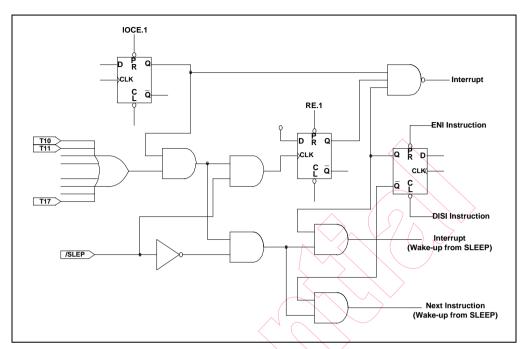


Figure 6-12 Block Diagram of I/O Port 6 with Input Change Interrupt/Wake-up

Table 6-1 Usage of Port 6 Input Change Wake-up/Interrupt Function

	Usage of Port 6 Input Status Cha	nged Wake-up/Interrupt
	(I) Wake-up Input Status Change	(II) Interrupt Input Status Change
	(a) Before Sleep	1. Read I/O Port 6 (MOV R6,R6)
	1. Disable WDT ² (use this very carefully)	2. Execute "ENI"
	2. Read I/O Port 6 (MOV R6,R6)	3. Enable interrupt (Set IOCF=1)
	3 a. Enable interrupt (Set IOCF=1), after wake-up if "ENI" switch to interrupt vector (006H), if "DISI" excute next instruction	4. IF Port 6 change (interrupt) → Interrupt vector (006H)
	3 b. Disable interrupt (Set IOCF=1). Always execute next instruction	
$\langle \rangle$	4. Enable wake-up bit (Set RA=6)	
	5. Execute "SLEP" instruction	
	(b) After Wake-up	
	1. IF "ENI" \rightarrow Interrupt vector (006H)	
	2. IF "DISI" \rightarrow Next instruction	

² Software disables WDT (watchdog timer) but hardware must be enabled before applying Port 6 Change Wake-up function (Code Option Register Word 0 Bit 6 (ENWDTB) is set to "1").

Vdd = 3V, set up time period = 16.5ms $\pm 5\%$

³ Vdd = 5V, set up time period = 16.5ms $\pm 5\%$

6.5 Reset and Wake-up

6.5.1 Reset

A reset is initiated by one of the following events:

- (1) Power-on reset
- (2) /RESET pin input "low"
- (3) WDT time-out (if enabled)

The device is kept in a reset condition for a period of approx. 18ms³ (one oscillator start-up timer period) after the reset is detected. Once a reset occurs, the following functions are performed.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog timer and prescaler are cleared.
- When power is switched on, the upper three bits of R3 are cleared.
- The bits of the RB, RC, RD, RD, RE registers are set to their previous status.
- The bits of the CONT register are set to all "0" except for Bit 6 (INT flag).
- The bits of the Pull-high, Pull-down.
- Bank 0 RF, IOCF registers are cleared.

Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering sleep mode, WDT (if enabled) is cleared but keeps on running. After a wake-up, in RC mode the wake-up time is 16 clocks.

The controller can be awakened by:

- (1) External reset input on /RESET pin
- (2) WDT time-out (if enabled)
- (3) Port 6 input status changes (if enabled)
- (4) External (P60 / INT) pin changes (if EXWE is enabled)
- (5) A/D conversion completed (if ADWE is enabled)

³ Vdd = 5V, set up time period = $16.5ms \pm 5\%$

Vdd = 3V, set up time period = 16.5ms $\pm 5\%$

The first two events (1 & 2) will cause the EM78F734N to reset. The T and P flags of R3 can be used to determine the source of the reset (wake-up). Events 3, 4, and 5 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following wake-up. If ENI is executed before SLEP, the instruction will begin to execute from address 0x3, 0x6 0xF, 0x15 or 0X30, after wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after wake-up. All throughout the sleep mode, wake-up time is150 µs, no matter what oscillation mode (except low Crystal mode). In low Crystal 2 mode, wake-up time is 500 ms.

One or more of the above Events 3 to 6 can be enabled before entering into sleep mode but is awakened only by one of the events.

- [a] If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the EM78F734N can be awakened only by Event 1 or 2. Refer to Section 6.6 *Interrupt* for further details.
- [b] If Port 6 Input Status Change is used to wake up the EM78F734N and the ICWE bit of the RA register is enabled before SLEP, WDT must be disabled. Hence, the EM78F734N can be awakened only by Event 3. The following instructions must be executed before SLEP:

^		
MOV A,	001110xxb	;Select WDT prescaler and disable WDT
IOW IOCA	$\langle \ \rangle$	
WDTC	$\langle \rangle \rangle$	Clear WDT and prescaler
MOV R6,	R6	;Read Port 6
ENI (or DISI)	\setminus	;Enable (or disable) global interrupt
MOV A,	010xxxxxb	;Enable Port 6 input change Wake-up bit
MOV RA,	A A	
MOV A, (00000x1xb	;Enable Port 6 input change interrupt
IOW IOCH	Ŧ	
SLEP		;Sleep

[c] If External (P60/INT) pin changes is used to wake-up the EM78F734N and EXWE bit of the RA register is enabled before SLEP, WDT must be disabled by software.
 Hence, the EM78F734N can be awakened only by Event 4.

[d] If AD conversion completed is used to wake-up EM78F734N and ADWE bit of the RA

register is enabled before SLEP, the WDT must be disabled by software. Hence, the EM78F734N can be waken-up only by Event 5.

The following instructions must be executed before SLEP:

BS BS	R4, 7 R4, 6	;	Select Bank 3
MOV	A, @x10xxxxxb		Select a comparator and P70 act as CO pin
MOV	R7,A		-
MOV	A, @001110xxb		Select WDT prescaler and Disable WDT
IOW	IOCA		
WDTC		;	Clear WDT and prescaler
ENI (or DISI)		;	Enable (or disable) global
		;	interrupt
MOV	A, @100xxxxxb	;	Enable comparator output status
		;	change wake-up bit
MOV	RA,A		
MOV	A, @10000000b	;	Enable comparator output status
		;	change interrupt
IOW	IOCE		
SLEP		;	Sleep

6.5.2 Summary of Wake-up and Interrupt Modes Operation

All categories under Wake-up and Interrupt modes are summarized below.

The controller can be awakened from Sleep mode and Idle mode. The Wake-up signals are listed as follows.

Wake-up Signal	Sleep Mode	Idle Mode	Green Mode	Normal Mode
External interrupt	If enable EXWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction	If enable EXWE bit Wake-up + interrupt (if interrupt is enablee) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
Port 6 pin change	If enable ICWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction	If enable ICWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
TCC overflow interrupt	x	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction

(Continuation)

Wake-up Signal	Sleep Mode	Idle Mode	Green Mode	Normal Mode
AD conversion complete interrupt	If enable ADWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction Fs and Fm don't stop	If enable ADWE bit Wake-up + interrupt (if interrupt is enabled) + next instruction Fs and Fm don't stop	Interrupt (if interrupt is enabled) or next instruction Fs and Fm don't stop	Interrupt (if interrupt is enabled) or next instruction
TC2 interrupt	x	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
TC3 interrupt	x	Wake-up + interrupt (if interrupt is enabled) + next instruction	Interrupt (if interrupt is enabled) or next instruction	Interrupt (if interrupt is enabled) or next instruction
WDT Time out	RESET	RESET	RESET	RESET
Low Voltage Reset	RESET	RESET	RESET	RESET
Afte	er wake up:			

1. If interrupt is enabled \rightarrow interrupt+ next instruction

2. If interrupt is disabled \rightarrow next instruction

6.5.3 Summary of Register Initial Values

Legend: x: Not used **U**: Unknown or don't care P: Previous value before reset t: Check tables under Section 6.5.4

Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	C57	-	C55	C54	C53	C52	C51	C50
0x05	1005	Power-on	1	0	1	1	1	1	1	1
0x05	1005	/RESET and WDT	1	0	1	1	1	1	1	1
		Wake-up from Pin Change	Р	0	Р	Р	Р	Р	Р	Р
	IOC6	Bit Name	-	-	-	-	C63	C62	C61	C60
0x06		Power-on	0	0	0	0	1	1	1	1
0,000	1000	/RESET and WDT	0	0	0	0	1	1	1	1
		Wake-up from Pin Change	0	0	0	0	Р	Р	Р	Р
		Bit Name	C77	-	-	C74	C73	C72	C71	C70
0x07	IOC7	Power-on	1	0	0	1	1	1	1	1
0.07	1007	/RESET and WDT	1	0	0	1	1	1	1	1
		Wake-up from Pin Change	Р	0	0	Р	Р	Р	Р	Р

		(Continuation)								
Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	C83	-	-	-
0x08	IOC8	Power-on	0	0	0	0	1	0	0	0
0x00	1000	/RESET and WDT	0	0	0	0	1	0	0	0
		Wake-up from Pin Change	0	0	0	0	Р	0	0	0
		Bit Name	INTE	/INT	TS	TE	PSTE	PST2	PST1	PST0
N/A	CONT	Power-on	0	0	0	0	0	9	0	0
IN/A	CONT	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	P	P	Р
		Bit Name	IAR7	IAR6	IAR5	IAR4	IAR3	IAR2	IAR1	IAR0
0x00) R0 (IAR)	Power-on	U	U	U	U	/U /	(U()	U	U
0,00		/RESET and WDT	Р	Р	Р	P	P	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	P	P	Р	Р
		Bit Name	TCC7	TCC6	TCC5	TCC4	TCC3	TCC2	TCC1	TCC0
0x01	01 R1	Power-on	0	0	0	0	0	0	0	0
0.01	(TCC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	P	P	P	Р	Р	Р
		Bit Name	A7	A6	A5	A4	A3	A2	A1	A0
0x02	R2 (PC)	Power-on	0	0	0	Ŏ	0	0	0	0
0,02	NZ (FC)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	P	P	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	Т	Р	Z	DC	С
0x03	R3 (SR)	Power-on	0	0	0	1	1	U	U	U
0,03	N3 (3N)	/RESET and WDT	0	0	0	t	t	Р	Р	Р
		Wake-up from Pin Change	0	0	0	t	t	Р	Р	Р
		Bit Name	RSR7	RSR6	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0
0x04	R4	Power-on	Ŭ	U	U	U	U	U	U	U
0,04	(RSR)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	P P P TCC3 0 0 0 0 0 0 0 0 A4 A3 0 0 A4 A3 0 0 P P A4 A3 0 0 P P 1 1 t t SR4 RSR3 U U P P PS4 P53 1 1 P P - P63 0 1 0 1 0 1 0 1 0 1 0 1	Р	Р	Р
		Bit Name	P57	-	P55	P54	P53	P52	P51	P50
0x05	P5	Power-on	1	0	1	1	1	1	1	1
0x05	(Bank 0)	/RESET and WDT	1	0	1	1	1	1	1	1
		Wake-up from Pin Change	Р	0	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	P63	P62	P61	P60
0,000	P6	Power-on	0	0	0	0	1	1	1	1
0x06	(Bank 0)	/RESET and WDT	0	0	0	0	1	1	1	1
		Wake-up from Pin Change	0	0	0	0	Р	Р	Р	Р
		Bit Name	P77	-	-	P74	P73	P72	P71	P70
0.07	P7	Power-on	1	0	0	1	1	1	1	1
0x07	(Bank 0)	/RESET and WDT	1	0	0	1	1	1	1	1
		Wake-up from Pin Change	Р	0	0	Р	Р	Р	Р	Р

(Continuation)

EM78F734N 8-Bit Microcontroller

		(Continuation)								
Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	P83	-	-	-
000	P8	Power-on	0	0	0	0	1	0	0	0
0x08	(Bank 0)	/RESET and WDT	0	0	0	0	1	0	0	0
		Wake-up from Pin Change	0	0	0	0	Р	0	0	0
		Bit Name	RBit7	RBit6	RBit5	RBit4	RBit3	RBit2	RBit1	RBit0
0200	R9	Power-on	0	0	0	0	0	0	0	0
0X09	(Bank 0)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	P	Р	Р
		Bit Name	-	ICWE	ADWE	EXWE	-	-	-	-
0x0A	RA (Bank 0)	Power-on	0	0	0	0	<u> </u>	0	0	0
UXUA		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	Р	Р	Р	> 0	0	0	0
		Bit Name	RD	WR	EEWE	EEDF	EEPC	-	-	-
0X0B	RB (ECR)	Power-on	0	0	0	0	0	0	0	0
UNUB	(Bank 0)	/RESET and WDT	Р	Р	P	P	P	0	0	0
	· · · ·	Wake-up from Pin Change	Р	Р	P	P	P	0	0	0
		Bit Name	-	EE_A6	EE_A5	EE_A4	EE_A3	EE_A2	EE_A1	EE_A0
0X0C	RC	Power-on	0	0	0	0	0	0	0	0
0700	(Bank 0)	/RESET and WDT	0	P	P	Р	Р	Р	Р	Р
		Wake-up from Pin Change	0	P	P	Р	Р	Р	Р	Р
		Bit Name	EE_D7	EE_D6	EE_D5	EE_D4	EE_D3	EE_D2	EE_D1	EE_D0
0X0D	RD	Power-on	0	0	0	0	0	0	0	0
0/102	(Bank 0)	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	P	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	TIMERSC	CPUS	IDLE	-	-	-	-
0X0E	RE	Power-on	0	1	1	1	0	0	0	0
UNUL	(Bank 0)	/RESET and WDT	0	1	1	1	0	0	0	0
		Wake-up from Pin Change	0	Р	Р	Р	0	0	0	0
		Bit Name	-	ADIF	-	-	-	EXIF	ICIF	TCIF
0x0F	RF (ISR)	Power-on	0	0	0	0	0	0	0	0
0,01	(Bank 0)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	Р	0	0	0	Р	Р	Р
		Bit Name	TC1AP	TC1S	TC1M	TC1ES	TC1MOD	TCK1CK2	TC1CK1	TC1CK0
0x5	R5	Power-on	0	0	0	0	0	0	0	0
0,5	(Bank 1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

		(Continuation)								
Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	TC1DA7	TC1DA6	TC1DA5	TC1DA4	TC1DA3	TC1DA2	TC1DA1	TC1DA0
0x6	R6	Power-on	0	0	0	0	0	0	0	0
0x0	(Bank 1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	, P	Р	Р
		Bit Name	TC1DB7	TC1DB6	TC1DB5	TC1DB4	TC1DB3	TC1DB2	TC1DB1	TC1DB0
0X7	R7	Power-on	0	0	0	0	0	0	0	0
0.7	(Bank 1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	P	> P (S P	P	Р
		Bit Name	RCM1	RCM0	-	-	-	-	-	-
0x8	R8	Power-on	Option RCM1	Option RCM0	0	0	0	0	0	0
0.0	(Bank 1)	/RESET and WDT	Option RCM1	Option RCM0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	0	0	0	0	0	0
	R9 (Bank 1)	Bit Name	TC2DA7	TC2DA6	TC2DA5	TC2DA4	TC2DA3	TC2DA2	TC2DA1	TC2DA0
0x9		Power-on	0	0	0	0	0	0	0	0
073		/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	P	P	Р	Р	Р	Р	Р
		Bit Name	TC2DB7	TC2DB6	TC2DB5	TC2DB4	TC2DB3	TC2DB2	TC2DB1	TC2DB0
0XA	RA	Power-on	0	0) 0	0	0	0	0	0
0///	(Bank 1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	P	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	TCIF3	-	TCIF1	-	-	-
0XF	RF	Power-on	0	0	0	0	0	0	0	0
	(Bank 1)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Rin Change	0	0	Р	0	Р	0	0	0
		Bit Name	ADE7	-	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0
0x05	R5	Power-on	0	0	0	0	0	0	0	0
0x05	(Bank 2)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	0	Р	Р	Р	Р	Р	Р
		Bit Name	VREFS	CKR1	CKR0	ADRUN	ADPD	ADIS2	ADIS1	ADIS0
0.000	R6	Power-on	0	0	0	0	0	0	0	0
0x06	(Bank 2)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

EM78F734N 8-Bit Microcontroller

		(Continuation)								
Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	-	-	-	-	-	PDE	-	-
0x7	R7	Power-on	0	0	0	0	0	0	0	0
0.27	(Bank 2)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	0	0	0	0	P	0	0
		Bit Name	ADD11	ADD10	ADD9	ADD8	ADD7	ADD6	ADD5	ADD4
0x8	R8	Power-on	0	0	0	0	0	0	0	0
0.0	(Bank 2)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	P	Р	P	P	Р
		Bit Name	-	-	IRVS1	IRVS0	ADD3	ADD2	ADD1	ADD0
0x9	R9	Power-on	0	0	0	0	0	0	0	0
0.03	(Bank 2)	/RESET and WDT	0	0	0) 0	0	0	0	0
		Wake-up from Pin Change	0	0	Р	P	P	P	Р	Р
	RF (Bank 2)	Bit Name	-	-	-	-	/PH73	/PH72	/PH71	/PH70
0x0F		Power-On	0	0	0	0	1	1	1	1
UXUF		/RESET and WDT	0	0	0	0	1	1	1	1
		Wake-up from Pin Change	0	0	>0 $>$	0	Р	Р	Р	Р
	R6 (Bank 3)	Bit Name	MLB	-	-	-	RBit 11	RBit 10	RBit 9	RBit 8
0X06		Power-On	0	0	0	0	0	0	0	0
0700		/RESET and WDT	0 (0	0	0	0	0	0	0
		Wake-up from Pin Change	P	ON	0	0	Р	Р	Р	Р
		Bit Name	TC3FF1	TC3FF0	TC3S	TC3CK2	TC3CK1	TC3CK0	TC3M1	TC3M0
0XD	RD	Power-on	0	0	0	0	0	0	0	0
UND	(Bank 3)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	P	Р	Р	Р	Р	Р	Р	Р
		Bit Name	TC3D7	TC3D6	TC3D5	TC3D4	TC3D3	TC3D2	TC3D1	TC3D0
0XE	RE	Power-on	0	0	0	0	0	0	0	0
UNL	(Bank 3)	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	-	-	-	-	/PD73	/PD72	/PD71	/PD70
0XF	RF	Power-on	0	0	0	0	1	1	1	1
UAF	(Bank 3)	/RESET and WDT	0	0	0	0	1	1	1	1
		Wake-up from Pin Change	0	0	0	0	Р	Р	Р	Р

		(Continuation)								
Addr	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	WDTE	EIS	-	-	PSWE	PSW2	PSW1	PSW0
0x0A	IOCA	Power-on	0	0	0	0	0	0	0	0
UXUA	IOCA	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	0	0	Р	<u></u>	Р	Р
		Bit Name	/PD7	/PD6	/PD5	/PD4	/PD3	/PD2	/PD1	/PD0
	IOCB	Power-on	1	1	1	1	1	1	T	1
0,00	ICCD	/RESET and WDT	1	1	1	1	1 /	1	~	<u> </u>
		Wake-up from Pin Change	Р	Р	Р	P	> P (✓P ∧	P	Р
		Bit Name	-	-	-	-	OD3	OD2	OD1	OD0
0x0C	IOCC	Power-on	0	0	0	0	0	0	0	0
0,00	1000	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	0	0	0	P	P	Р	Р
		Bit Name	-	-	-	-	/PH3	/PH2	/PH1	/PH0
0x0D	IOCD	Power-on	0	0	0	0	<u> </u>	1	1	1
0,00	ICCD	/RESET and WDT	0	0	0	0	1	1	1	1
		Wake-up from Pin Change	0	0 (0	0	Р	Р	Р	Р
		Bit Name	-	-	TCIE3	-	TCIE1	-	-	-
0x0E	IOCE	Power-on	0	0	0	0	0	0	0	0
UXUE	IOCE	/RESET and WDT	Q	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	0	Р	0	Р	0	0	0
		Bit Name	-	ADIE	-	-	-	EXIE	ICIE	TCIE
0x0F	IOCF	Power-on	0	<u> </u>	0	0	0	0	0	0
UXUF	IUCF	/RESET and WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	0	Р	0	0	0	Р	Р	Р
		Bit Name	R7	R6	R5	R4	R3	R2	R1	R0
0x10~	R10~	Power-on	U	U	U	U	U	U	U	U
0x2F	R2F	/RESET and WDT	Р	Р	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

6.5.4 Status of RST, T, and P of the Status Register

A reset condition is initiated by the following events:

- 1. Power-on condition
- 2. High-low-high pulse on /RESET pin
- 3. Watchdog timer time-out

The values of T and P, listed in the first table below are used to check how the processor wakes up. The second table shows the events that may affect the status of T and P.

Values of RST, T and P after Reset

Т	Р
1	1
*P	*P
1	0
0	*P
0	0
1	0
	T 1 *P 1 0 0 1

*P: Previous status before reset

Status of T and P Being Affected by Events.

Event	Т	Р
Power on	1	1
WDTC instruction	1	1
WDT time-out	0	*P
SLEP instruction	1	0
Wake-up on pin change during Sleep mode	1	0

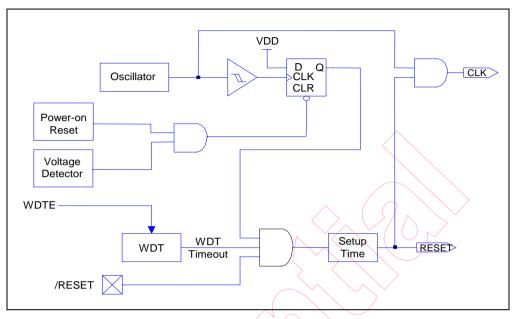


Figure 6-13 Controller Reset Block Diagram

6.6 Interrupt

The EM78F734N has eight interrupts (four external, four internal) as listed below:

Interru	pt Source	Enable Condition	Int. Flag	Int. Vector	Priority
Internal / External	Reset		-	0000	High 0
External		ENI + EXIE=1	EXIF	0003	1
External	Port 6 pin change	ENI +ICIE=1	ICIF	0006	2
Internal	ТСС	ENI + TCIE=1	TCIF	0009	3
Internal	TC1	ENI + TCIE1=1	TCIF1	0018	4
Internal	ТСЗ	ENI + TCIE3=1	TCIF3	0027	5
Internal	AD	ENI + ADIE=1	ADIF	0030	6

RF is interrupt status register that records the interrupt requests in the relative flags/ bits. IOCF is interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occur, the next instruction will be fetched from their individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).

The external interrupt is equipped with an on-chip digital noise rejection circuit (input pulse less than **8 system clock time** is eliminated as noise). When an interrupt (Falling edge) is generated by the External interrupt (when enabled), the next instruction will be fetched from Address 003H.

Before the interrupt subroutine is executed, the contents of ACC and the R3 and R4 register will be saved by hardware. If another interrupt occurred, the ACC, R3 and R4 will be replaced by the new interrupt. After the interrupt service routine is finished, ACC, R3 and R4 will be pushed back.

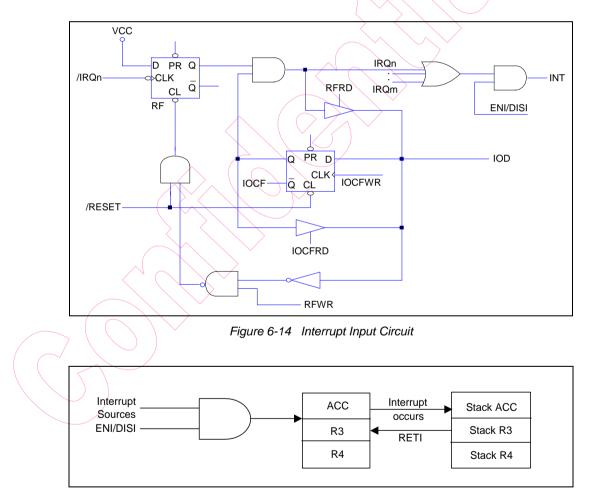


Figure 6-15 Interrupt Back-up Diagram

6.7 Data EEPROM

The Data EEPROM is readable and writable during normal operation over the whole Vdd range. The operation for Data EEPROM is base on a single byte. A write operation makes an erase-then-write cycle to take place on the allocated byte.

The Data EEPROM memory provides high erase and write cycles. A byte write automatically erases the location and writes the new value.

6.7.1 Data EEPROM Control Register

6.7.1.1 RB (EEPROM Control Register)

The EECR (EEPROM Control Register) is the control register for configuring and initiating the control register status.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	RD	WR	EEWE	EEDF	EEPC	-	-	-			
	Bit 7 (RD): Read control register										
		0 : Does not execute EEPROM read									
			$\sum ($		t, (RD can b I instruction	•) is cleared			
	Bit 6 (WR)	: Write	control reg	gister							
		0 : W	rite cycle t	o the EEPF	ROM is com	npleted.					
	\langle			•	/R can be s cle is comp	•	vare, WR is	cleared by			
	Bit 5 (EEW	(E): EEPF	ROM Write	Enable bit							
\square	\sim	0 : W	rite to the	EEPROM i	s prohibited	J.					
		1 : Al	lows EEPF	ROM write	cycles						
\frown	Bit 4 (EED	F): EEPF	ROM Deteo	ct Flag							
		0 : W	rite cycle is	s complete	d						
		1 : W	rite cycle is	s unfinishe	d						
	Bit 3 (EEPC): EEPROM power-down control bit										
		0 : Sv	witch off th	e EEPROM	1						
		1 : E	EPROM is	operating							
	Bits 2 ~ 0:	Not u	sed, set to	• " 0 " at all ti	me						

6.7.1.2 RC (128 Bytes EEPROM Address)

When accessing the EEPROM data memory, the RC (128 bytes EEPROM address register) holds the address to be accessed. According the operation, the RD (128 bytes EEPROM Data register) holds the data to written, or the data read, at the address in RC.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	EE_A6	EE_A5	EE_A4	EE_A3	EE_A2	EE_A1	EE_A0

Bit 7: Not used, set to "0" at all time.

Bits 6 ~ 0: 128 bytes EEPROM address

6.7.1.3 RD (256 Bytes EEPROM Data)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EE_D7	EE_D6	EE_D5	EE_D4	EE_D3	EE_D2	EE_D1	EE_D0

Bits 7 ~ 0: 128 bytes EEPROM data

6.7.2 Programming Step / Example Demonstration

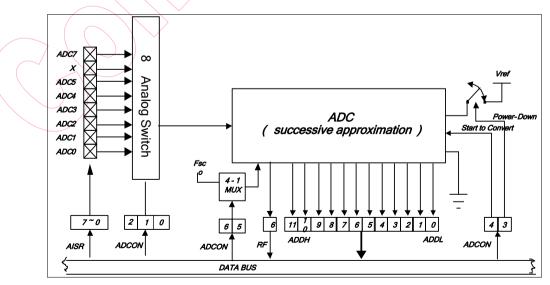
6.7.2.1 Programming Step

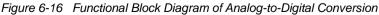
Follow these steps to write or read data from the EEPROM:

- **Step 1** Set the RB.EEPC bit to "1" to enable the EEPROM power.
- Step 2 Write the address to RC (128 bytes EEPROM address).
 - 1. (a) Set the RB.EEWE bit to 1, if the write function is employed.
 - (b) Write the 8-bit data value to be programmed in the RD (256 bytes EEPROM data)
 - (c) Set the RB.WR bit to "1", then execute the write function.
 - 2. Set the RB.READ bit to "1", after which, execute the read function.

Step 3 Wait for the RB.EEDF or RB.WR to be cleared

- **Step 4** For the next conversion, go to Step 2 as required.
- **Step 5** If you want to save power, make sure the EEPROM data is not used by clearing the RB.EEPC.


6.7.2.2 Example Demonstration Programs


```
; Define the control register and write data to EEPROM
RC == 0 \times 0C
RB == 0 \times 0B
RD == 0 \times 0 D
Read == 0x07
WR == 0 \times 06
EEWE == 0x05
EEDF == 0x04
EEPC == 0x03
BS RB, EEPC
                  ; Set the EEPROM power on
MOV A,@0x0A
MOV RC,A
                 ; Assign the address from EEPROM
                 ; Enable the EEPROM write function
BS RB, EEWE
MOV A,@0x55
                 ; Set the data for EEPROM
MOV RD,A
BS RB,WR
                 ; Write value to EEPROM
JBC RB,EEDF
                 ; Check whether the EEPROM bit is completed or not
JMP $-1
```

6.8 Analog-to-Digital Converter (ADC)

The analog-to-digital circuitry consists of a 9-bit analog multiplexer, three control registers (AISR/R5 (Bank 2), ADCON/R6 (Bank 2), ADOC/R7 (Bank 2), two data registers (ADDH, ADDL/R8, R9) and an ADC with 12-bit resolution. The analog reference voltage (Vref) and analog ground are connected via separate input pins. The functional block diagram of the ADC is shown below.

The ADC module utilizes successive approximation to convert the unknown analog signal into a digital value. The result is fed to the ADDH and ADDL. Input channels are selected by the analog input multiplexer via the ADCON register Bits ADIS2, ADIS1 and ADIS0.

6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)

6.8.2 Bank 2 R5 AISR (ADC Input Select Register)

The AISR register defines the ADC pins as analog input or as digital I/O.

The AISK register defines the ADC pins as analog input of as digital 1/O.									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ADE7	-	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0		
Bit 7 (ADE7): AD converter enable bit of P57 pin.									
0 : Disable ADC7, P57 functions as I/O pin.									
	1 : Enable ADC7 to function as analog input pin								
Bit 6:	Not us	ed, set to	" 0 " at all tin	ne.	\sim ($\Omega $	\searrow		
Bit 5 (ADE5)	: AD cor	overter ena	able bit of F	77 pin	$\checkmark \checkmark \checkmark$	$(\bigcirc \lor$	7		
, , , , , , , , , , , , , , , , , , ,				tions as I/C) pin				
	1 : Ena	able ADC6	to functior	n as analog	input pin	>			
Bit 4 (ADE4)	: AD cor	verter ena	able bit of F	73 pin	$\mathbf{\mathbf{i}}$				
			<	tions as I/C) pin				
	1 : Ena	able ADC5	to function	n as analog	input pin				
Bit 3 (ADE3)	: AD cor	verter ena	ble bit of F	263 pin.					
	0 : Dis	able ADC4	1, P63 func	tions as I/C) pin				
	1 : Ena	able ADC4	to function	n as analog	input pin				
Bit 2 (ADE2)	: AD cor	verter ena	able bit of F	962 pin.					
	0 : Dis	able ADC3	3, P62 func	tions as I/C) pin				
(1 : Ena	able ADC3	to functior	n as analog	input pin				
Bit 1 (ADE1)	: AD cor	verter ena	able bit of F	P61 pin					
	0 : Dis	able ADC2	2, P61 func	tions as I/C) pin				
	1 : Ena	able ADC2	to function	n as analog	input pin				
Bit 0 (ADE0)	: AD cor	verter ena	able bit of F	°60 pin					
	0 : Dis	able ADC1	I, P60 func	tions as I/C) pin				
\bigcirc	1 : Ena	able ADC1	to function	n as analog	input pin				
The following	table sh	nows the p	riority of P6	60/AD1//IN	Г.				

P60/ADC0/INT Pin Priority								
Hight Medium Low								
INT	AD1	P60						

6.8.3 Bank 2 R6 ADCON (A/D Control Register)

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VI	REFS	CKR1	CKR0	ADRUN	ADPD	ADIS2	ADIS1	ADIS0

Bit 7 (VREFS): Input source of the Vref of the ADC.

- **0** : Vref of the ADC is connected to the internal reference which is selected by Bank 2 R9<5,4> (default value), and the P50/VREF pin carries out the function of P50
- 1 : Vref of the ADC is connected to P50/VREF

Bit 6 ~ Bit 5 (CKR1 ~ CKR0): Prescaler of oscillator clock rate of ADC

CKR1/CKR0	Operation Mode	Max. Operation Frequency
00	F _{OSC} /4	4 MHz
01	Fosc	
10	F _{OSC} /16	8 MHz
11	Fosc/2	1 MHz

Bit 4 (ADRUN): ADC starts to run

- **0** : Reset upon completion of AD conversion. This bit cannot be reset by software
- 1 : A/D conversion is started. This bit can be set by software

Bit 3 (ADPD): ADC Power-down mode

- **0** : Switch off the resistor reference to save power even while the CPU is operating
- 1 : ADC is operating

Bits 2~0 (ADIS2~ADIS0): AD Input Select Bits

ADIS2	ADIS1	ADIS0	AD Input Pin
0	0	0	AD1
0	0	1	AD2
0	1	0	AD3
0	1	1	AD4
1	0	0	AD5
1	0	1	AD6
1	1	0	Reserve
1	1	1	AD8

6.8.4 Bank 2 R7 ADOC (A/D Offset Calibration Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	PDE	-	-

Bits 7~3: Not used, set to "0" at all time.

Bit 2 (PDE): 1/2 VDD Power Detect Enable bit.

0: Disable Power Detect (Default)

1: Enable Power Detect.

PDE	ADIS2	ADIS1	ADIS0	AD Input Select
1	х	х	×	1/2VDD
0	×	×	×	ADx

Bits 1~0: Not used, set to "0" at all time.

6.8.5 ADC Data Buffer (ADDH, ADDL/R8, R9)

When the A/D conversion is completed, the result is loaded to the ADDH, ADDL. The ADRUN bit is cleared, and the ADIF is set.

6.8.6 A/D Sampling Time

The accuracy, linearity, and speed of the successive approximation A/D converter are dependent on the properties of the ADC and the comparator. The source impedance and the internal sampling impedance directly affect the time required to charge the sample holding capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 2μ s for each K Ω of the analog source impedance and at least 2μ s for the low-

impedance source. The maximum recommended impedance for analog source is $10K\Omega$ at Vdd=5V. After the analog input channel is selected, this acquisition time must be done before the conversion can be started.

RCM[1:0]	Frequency (MHz)	Sample & Hold Timing
00	4	8 x T _{AD}
01	1	4 x T _{AD}
10	10 8 12 x ⁻	
11	455k	2 x T _{AD}

6.8.7 A/D Conversion Time

CKR0 and CKR1 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU to run at the maximum frequency without sacrificing the accuracy of A/D conversion. For the EM78F734N, the conversion time per bit is 1μ s. The table below shows the relationship between Tct and the maximum operating frequencies.

Tct vs. Maximum Operation Frequency

CKR0: CKR1	Operation Mode	Max. Operating Frequency	Max. Conversion Rate Per Bit	Max. Conversion Rate (12bit)
00	Fosc/4	4 MHz	1 MHz (1 µs)	(12+8)*1µs=20µs(50kHz)
01	Fosc	1 MHz	1 MHz (1µs)	(12+4)*1µs=16µs(62.5kHz)
10	Fosc/16	8 MHz	0.5 MHz (2 µs)	(12+12)*2μs=48μs(20.8kHz)
11	Fosc/2	1 MHz	0.5 MHz (2 μs)	(12+4)*2µs=32µs(31.25kHz)

NOTE

- The pin that is not used as analog input can be used as regular input or output pin.
- During conversion, do not perform output instruction to maintain precision for all of the pins.

6.8.8 A/D Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduced power consumption, the A/D conversion remains operational during sleep mode. As the SLEP instruction is executed, all the MCU operations will stop except for the Oscillator, TCC, TC1, TC3, and A/D conversion.

The AD Conversion is considered completed when:

- 1 ADRUN Bit of R6 Register is cleared to "0".
- 2 Wake-up from A/D Conversion remains in operation during Sleep Mode.

The result is fed to the ADDATA, ADOC when the conversion is completed. If the ADWE is enabled, the device will wake up. Otherwise, the A/D conversion will be shut off, no matter what the status of the ADPD bit is.

6.8.9 Programming Steps/Considerations

6.8.9.1 Programming Steps

Follow the following steps to obtain data from the ADC:

- 1. Write to the eight bits (ADE7, ADE5~ ADE0) on the R5 (AISR) register to define the characteristics of R6: Digital I/O, analog channels, and voltage reference pin.
- 2. Write to the R6/ADCON register to configure the AD module:
 - a. Select A/D input channel (ADIS1 ~ ADIS0).
 - b. Define the A/D conversion clock rate (CKR1 ~ CKR0),
 - c. Select the input source of the VREFS of the ADC.
 - d. Set the ADPD bit to "1" to begin sampling,
- 3. Set the ADWE bit, if the wake-up function is employed.
- 4. Set the ADIE bit, if the interrupt function is employed.
- 5. Put "ENI" instruction, if the interrupt function is employed.
- 6. Set the ADRUN bit to "1".
- 7. Wait for wake-up or when ADRUN bit is cleared to "0".
- 8. Read ADDATA, ADOC the conversion data register.
- 9. Clear the interrupt flag bit (ADIF) when A/D interrupt function occurs.
- 10. For the next conversion, repeat from Step 1 or Step 2 as required. At least 2 Tct is required before the next acquisition starts.

NOTE

To obtain an accurate value, it is necessary to avoid any data transition on the I/O pins during AD conversion.

6.8.9.2 Sample Demonstration Programs

C INT== OXF

7;	то	define	the	General	Registers	
_	~	~ ~ /			,	

$R_0 = 0$;	Indirect addressing register
PSW == 3	;	Status register
PORT5 == 5		
PORT6 == 6		
RE== OXE	;	Wake-up control resister
RF== OXF	;	Interrupt status register
; To define the Control Reg	Ţİ.	ster
IOC50 == 0X5	;	Control Register of Port 5
IOC60 == 0X6	;	Control Register of Port 6

; Interrupt Control Register

EM78F734N 8-Bit Microcontroller

; ADC Control Registers	
ADDATA == 0×8	; The contents are the results of ADC
AISR == 0x08	; ADC output select register
$ADCON == 0 \times 6$; 7 6 5 4 3 2 1 0
	VREFS CKR1 CKR0 ADRUN ADPD
	- ADIS1 ADIS0
; To define bits	
; In ADCON	
ADRUN == 0x4	; ADC is executed as the bit is set
ADPD == 0x3	; Power Mode of ADC
; Program Starts	
ORG 0	; Initial address
JMP INITIAL	
ORG 0x30	; Interrupt vector
(User program)	
CLR RF	; To clear the ADIF bit
BS ADCON , ADRUN	; To start to execute the next AD
	; conversion if necessary
RETI	
INITIAL:	
MOV A , @0B0000001	; To define P60 as an analog input
MOV AISR , A	, to define for ab an analog input
MOV A , @0B00001000	; To select P60 as an analog input
	; channel, and AD power on
MOV ADCON , A	; To define P60 as an input pin and
	; set clock rate at fosc/16
En_ADC:	
MOV A , @OBXXXXXX1	; To define P60 as an input pin, and
	; the others are dependent
$\langle \neg \land \lor \rangle$; on applications
IOW PORT6	
MOV A , @0BXXXX1XXX	; Enable the ADWE wake-up function
\sim	; of ADC, "X" by application
MOV RE , A	
MOV A , @OBXXXX1XXX	; Enable the ADIE interrupt function
	; of ADC, "X" by application
IOW C_INT	
ENI	; Enable the interrupt function
BS ADCON , ADRUN	; Start to run the ADC
	is ; employed, the following three lines
; may be ignored	is ; employed, the lollowing three lines
POLLING:	. The sheat the ADDIM bit , continuously
JBC ADCON , ADRUN	; To check the ADRUN bit ; continuously
JMP POLITING	; ADRUN bit will be reset as the AD
POLLING	; conversion is completed
; (User program)	
;	

Product Specification (V0.3) 11.05.2013 (This specification is subject to change without further notice)

6.9 Timer/Counter 1

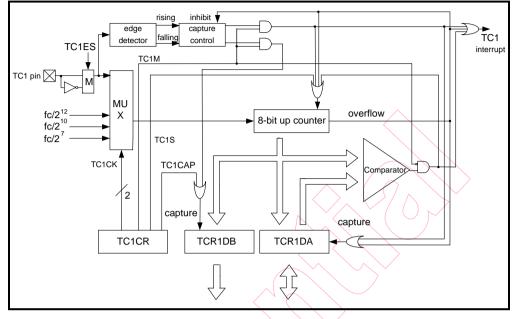


Figure 6-17 Configuration of Timer / Counter 1

- In Timer mode, counting up is performed using an internal clock. When the contents of the up-counter matched the TC1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TC1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.
- In Counter mode, counting up is performed using an external clock input pin (TC1) and either rising or falling edge can be selected by TC1ES but **both edges cannot be used**. When the contents of the up-counter matched the TC1DA, then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared. The current contents of the up-counter are loaded into TC1DB by setting TC1CAP to "1" and the TC1CAP is automatically cleared to "0" after capture.
- In Capture mode, the pulse width, period and duty of the TC1 input pin are measured in this mode, which can be used to decode the remote control signal. The counter is free running by the internal clock. On the rising (falling) edge of TC1 pin input, the contents of counter is loaded into TC1DA, then the counter is cleared and interrupt is generated. On a falling (rising) edge of TC1 pin input, the contents of the counter are loaded into TC1DB. The counter is still counting, on the next rising edge of TC1 pin input, the contents of the counter are loaded into TC1DA, the counter is cleared and interrupt is generated again. If an overflow before the edge is detected, the FFH is loaded into TC1DA and the overflow interrupt is generated. During interrupt processing, it can be determined whether or not there is an overflow by checking whether or not the TC1DA value is FFH. After an interrupt (capture to TC1DA or overflow detection) is generated, capture and overflow detection are halted until TC1DA is read out.

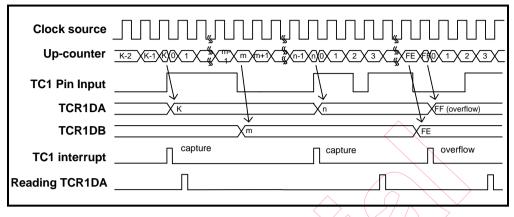


Figure 6-18 Capture Mode Timing Chart

6.10 Timer/Counter 3

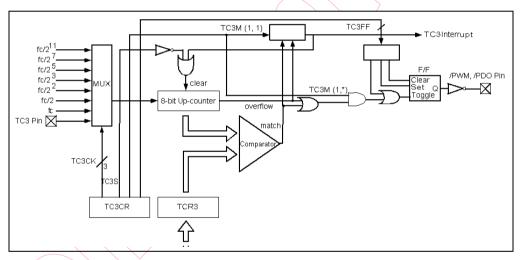


Figure 6-19 Timer/Counter 3 Mode Configuration

Timer Mode

In Timer mode, counting up is performed using internal clock (rising edge trigger). When the contents of the up-counter match with TCR3, interrupt is then generated and the counter is cleared. Counting up resumes after the counter is cleared.

Counter Mode

In Counter mode, counting up is performed using the external clock input pin (TC3 pin). When the contents of the up-counter match with TCR3, interrupt is then generated and the counter is cleared. Counting up resumes after the counter is cleared.

Programmable Divider Output (PDO) Mode

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. The F/F can be initialized by program and it is initialized to "0" during reset. A TC3 interrupt is generated each time the /PDO output is toggled.

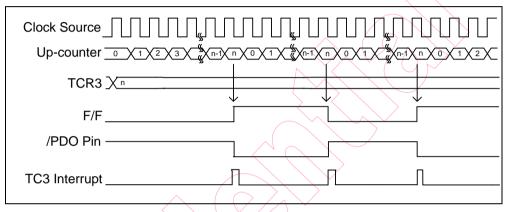


Figure 6-20 PDO Mode Timing Diagram

Pulse Width Modulation (PWM) Output Mode

In Pulse Width Modulation (PWM) Output mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F is toggled when a match is found. While the counter is counting, the F/F is toggled again when the counter overflows, then the counter is cleared. The F/F output is inverted and output to the /PWM pin. A TC3 interrupt is generated each time an overflow occurs. **TCR3 is configured as a 2-stage shift register and during output, will not switch until one output cycle is completed even if TCR3 is overwritten.** Hence, the output can be changed continuously. Also, on the first time, TRC3 is shifted by setting TC3S to "1" after data is loaded to TCR3.

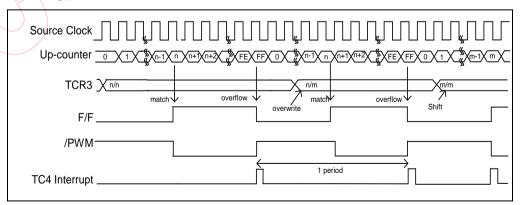


Figure 6-21 PWM Mode Timing Diagram

6.12 Oscillator

6.12.1 Oscillator Modes

The device can be operated in four different oscillator modes, such as Internal RC oscillator mode (IRC). User can select one of such modes by programming OSC2, OCS1 and OSC0 in the Code Option register. The table below depicts how these four modes are defined.

Oscillator Modes defined by OSC2 ~ OSC0

Mode	OSC2	OSC1	OSC0
Reserve	0	$\langle \mathbf{X} \cup \rangle$	x
IRC mode, OSCO (P54) act as I/O pin			0
IRC mode, OSCO (P54) act as RCOUT pin		0	1
Reserve	1	1	Х

In IRC mode, P55 is used as normal I/O pin.

The maximum operating frequency of the crystal/resonator on the different VDD is shown below:

Summary of Maximum Operating Speeds

Conditions	VDD	Max Fxt. (MHz)
	2.2	4.0
Two cycles with two clocks	4.0	8.0
	5.0	8.0

6.12.2 Internal RC Oscillator Mode

EM78F734N offers a versatile internal RC mode with default frequency value of 4 MHz. Internal RC oscillator mode has other frequencies (455kHz, 1 MHz and 8 MHz) that can be set by Code Option (Word 1), RCM1 and RCM0 when COBS =0, or set by Bank 1 R8 Bits 7, 6 when COBS=1. All these four main frequencies can be calibrated by programming the Code Option (Word 1) bits, C6~C0. The table describes a typical instance of the calibration.

■ Internal RC Drift Rate (Ta=25°C, VDD=5 V ± 5%, VSS=0V)

	Drift Rate							
Internal RC	Temperature (-40°C~85°C)	Voltage (2.2V~5.5V)	Process	Total				
455KHz	± 2%	± 3.5%	± 1%	± 6.5%				
1 MHz	± 2%	± 3.5%	± 1%	± 6.5%				
4 MHz	± 2%	± 3.5%	±1%	± 6.5%				
8 MHz	± 2%	± 3.5%	± 1%	± 6.5%				

6.13 Code Option Register

The EM78F734N has a Code option word that is not part of the normal program memory. The option bits cannot be accessed during normal program execution.

Code Option Register and Customer ID Register arrangement distribution:

Word 0	Word 1	Word 2
Bit 12~Bit 0	Bit 12∼Bit 0	Bit 12~Bit 0

6.13.1 Code Option Register (Word 0)

	Word 0												
Bit	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	-	NRHL	NRE	RESETENB	-	-	ENWDTB	OSC2	OSC1	OSC0	PR2	PR1	PR0
1		8/fc	Disable	Enable	-	-	Enable	High	High	High	High	High	High
0		32/fc	Enable	Disable	-	•	Disable	Low	Low	Low	Low	Low	Low
default	-	0	0	0			0	1	0	0	0	0	0

Bit 12: Not used, always set to "0".

Bit 11 (NRHL): Noise rejection high/low pulse define bit. INT pin is falling edge trigger.

1 : Pulses equal to 8/fc [s] is regarded as signal

0: Pulses equal to 32/fc [s] is regarded as signal (default)

- Bit 10 (NRE): Noise rejection enable. INT pin is falling edge trigger.
 - 1: Disable noise rejection
 - **0:** Enable noise rejection (default)

Bit 9 (RESETENB): Reset Pin Enable Bit

- 1 : Enable, P83//RESET=>RESET pin.
- **0** : Disable, P83//RESET=>P83 (default)
- Bit 8 ~ Bit 7: Not used, always set to "0"
- Bit 6 (ENWDTB): Watchdog timer enable bit
 - 1 : Enable
 - 0 : Disable

Bit 5 ~ Bit 3 (OSC2 ~ OSC0): Oscillator Mode Selection bits

Oscillator Modes defined by OSC2 ~ OSC0

Mode	OSC2	OSC1	OSC0	
Reserve	0	X	X	
IRC mode, OSCO (P54) act as I/O pin	1	0	0	
IRC mode, OSCO (P54) act as RCOUT pin	1	0		
Reserve	1	<u> </u>	X]

Bit 2 ~ Bit 0 (PR2 ~ PR0): Protect Bit. PR2~PR0 are protect bits, protect type is as

follows:							
PR2	PR1	PR0	Protect				
1	1		Enable				
0	0	0	Disable				

6.13.2 Code Option Register (Word 1)

Word 1													
Bit	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	COBS	TCEN	C6	C5	C4	C3	C2	C1	CO	RCM1	RCM0	LVR1	LVR0
1	High	TCC	High	High	High	High	High	High	High	High	High	High	High
0	Low	P77	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low
default	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 12 (COBS): Code Option Bit Selection

0 : IRC frequency select for code option (default)

1 : IRC frequency select internal register by Bank 1 R8(7,6)

Bit 11 (TCEN): TCC enable bit

- 0 : P77/TCC is set as P77
- 1 : P77/TCC is set as TCC
- Bit 10 (IRE): IRC Regulator Enable bit
 - 0: Disable regulator for saving power but more error of IRC.
 - 1: Enable regulator for improving IRC accurately but more power consumed.

Bit 10 ~ Bit 4 (C6 ~ C0): Internal RC mode calibration bits.

Bit 3 ~ Bit 2 (RCM1 ~ RCM0): RC mode selection bits

RCM 1	RCM 0	*Frequency (MHz)			
0	0	4			
0	1	1			
1	0	8			
1	1	455k			

Bit 1 ~ Bit 0 (LVR1 ~ LVR0): Low voltage reset enable bits

LVR1	LVR0	Reset Level	Release Level	
0	0	NA	NA	
0	1	2.5V	2.6V	Ì
1	0	2.9V	3.0V	
1	1	3.2V	3.3V	1

Note: LVR1, LVR0="0, 0": LVR disable, power- on reset point of EM78F734N

is 2.4V.

LVR1, LVR0="**0**, **1**": If Vdd < 2.9V, the EM78F734N will reset. LVR1, LVR0="**1**, **0**": If Vdd < 3.2V, the EM78F734N will reset.

LVR1, LVR0="1, 1": If Vdd < 3.9V, the EM78F734N will reset. Bit 10 ~ Bit 9: Fixed at "1"

6.13.3 Code Option Register (Word 2)

Word 2													
Bit	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Mnemonic	SC4	SC3	SC2	SC1	SC0	EFTIM	Shck sel 1	Shck sel 0	SFS	IRE	-	-	-
1	High	High	High	High	High	20MHz	High	High	128kHz	Enable	High	High	High
0	Low	Low	Low	Low	Low	10MHz	Low	Low	16kHz	Disabl e	Low	Low	Low
Default	0	0	0	0	0	1	0	0	0	0	0	0	0

Bits 12 ~ 8 (SC4 ~ SC0): Calibrator of sub frequency (WDT frequency auto calibration)

Bit 7 (EFTIM): EFT improvement. If MCU is at VDD=5V with working frequency of <12 MHz, or at VDD=3V with working frequency of <6 MHz, enabling this function can improve the performance of the electrical fast transient (EFT) test. If MCU is at VDD=5V and working frequency is >12 MHz, choose EFTIM=1

0: 10 MHz

1:20 MHz

Shcksel1:0	System hold clock
00	8 clock (default)
01	4 clock
10	16 clock
11	32 clock

Bits 4 (SFS): Sub-frequency select.

0: 16kHz (WDT frequency)

1: 128kHz.

Bit 3 (IRE) : IRC Regulator Enable bit

0:Disable regulator for saving power but more error of IRC.

1:Enable regulator for improving IRC accurately but more power consumed.

Bits 2~0: Not used, always set to "0"

6.14 Power-on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply stays has stabilized. The EM78F734N has an on-chip Power-on Voltage Detector (POVD) with a detecting level of 2.0V. It will work well if Vdd can rise quickly enough (50 ms or less). In many critical applications, however, extra devices are still required to assist in solving power-up problems.

6.15 External Power-on Reset Circuit

The circuit shown in Figure 6-24 uses an external RC to generate a reset pulse. The pulse width (time constant) should be kept long enough for Vdd to reached minimum operation voltage. This circuit is used when the power supply has slow rise time. Because the current leakage from the /RESET pin is $\pm 5\mu$ A, it is recommended that R should not be greater than 40K. In this way, the /RESET pin voltage is held below 0.2V. The diode (D) functions as a short circuit at the moment of power down.

The capacitor C will discharge rapidly and fully. Rin, the current-limited resistor, will prevent high current or ESD (electrostatic discharge) from flowing to pin /RESET.

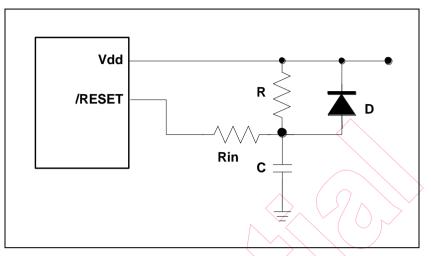


Figure 6-24 External Power-up Reset Circuit

6.16 Residue-Voltage Protection

When battery is replaced, device power (Vdd) is taken off but residue-voltage remains. The residue-voltage may trip below Vdd minimum, but not to zero. This condition may cause a poor power-on reset. Figure 6-25 and Figure 6-26 show how to build a residue-voltage protection circuit.

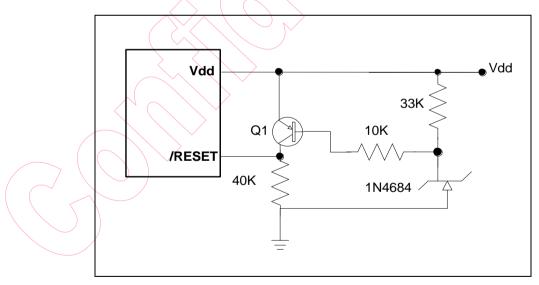


Figure 6-2 5 Circuit 1 for the Residue Voltage Protection



Figure 6-26 Circuit 2 for the Residue Voltage Protection

6.17 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of two oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", ...). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

 (A) "JMP", "CALL", "RET", "RETL", "RETI" commands are executed with one instruction cycle, the conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

In addition, the instruction set has the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on the I/O register.

■ Instruction Set Table:

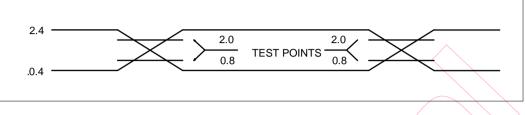
The following symbols are used in the following table:

- **"R**" Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- **"b**" Bit field designator that selects the value for the bit located in the register R and which affects the operation.
- "K" 8 or 10-bit constant or literal value

Mnemonic	Operation	Status Affected
NOP	No Operation	None
DAA	Decimal Adjust A	C C
CONTW	$A \rightarrow CONT$	None
SLEP	$0 \rightarrow WDT$, Stop oscillator	<u>т, р</u>
WDTC	$0 \rightarrow WDT$	Т, Р
IOW R	A → IOCR	None ¹
ENI	Enable Interrupt	None
DISI	Disable Interrupt	None
RET	$[Top of Stack] \rightarrow PC$	None
RETI	[Top of Stack] \rightarrow PC, Enable Interrupt	None
CONTR	$CONT \rightarrow A$	None
IOR R	$IOCR \rightarrow A$	None ¹
MOV R,A	$A \rightarrow R$	None
CLRA	$0 \rightarrow A$	Z
CLR R	$0 \rightarrow R$	Z
SUB A,R	$R-A \rightarrow A$	Z, C, DC
SUB R,A	$R-A \rightarrow R$	Z, C, DC
DECA R	$R-1 \rightarrow A$	Z
DEC R	$R-1 \rightarrow R$	Z
OR A,R	$A \lor R \rightarrow A$	Z
OR R,A	$A \vee R \rightarrow R$	Z
AND A,R	$A \& R \rightarrow A$	Z
AND R,A	$A \& R \rightarrow R$	Z
XOR A,R	$A \oplus R \to A$	Z
XOR R,A	$A \oplus R \to R$	Z
ADD A,R	$A + R \rightarrow A$	Z, C, DC
ADD R,A	$A + R \rightarrow R$	Z, C, DC
MOV A,R	$R \rightarrow A$	Z
MOV R,R	$R \rightarrow R$	Z
COMA R	$/R \rightarrow A$	Z
COM R	$/R \rightarrow R$	Z
INCA R	$R+1 \rightarrow A$	Z
INC R	$R+1 \rightarrow R$	Z

This instruction is applicable to IOC5~IOC7, IOCA ~ IOCF only.

1


Mnemonic	Operation	Status Affected
DJZA R	$R-1 \rightarrow A$, skip if zero	None
DJZ R	$R-1 \rightarrow R$, skip if zero	None
RRCA R	$ \begin{array}{l} R(n) \rightarrow A(n\text{-}1), \\ R(0) \rightarrow C, C \rightarrow A(7) \end{array} $	С
RRC R	$ \begin{array}{l} R(n) \rightarrow R(n-1), \\ R(0) \rightarrow C, C \rightarrow R(7) \end{array} $	C
RLCA R	$ \begin{array}{l} R(n) \to A(n+1), \\ R(7) \to C, C \to A(0) \end{array} $	C
RLC R	$ \begin{array}{l} R(n) \to R(n+1), \\ R(7) \to C, C \to R(0) \end{array} $	
SWAPA R	$R(0-3) \rightarrow A(4-7),$ $R(4-7) \rightarrow A(0-3)$	None
SWAP R	R(0-3) ↔ R(4-7)	None
JZA R	$R+1 \rightarrow A$, skip if zero	None
JZ R	$R+1 \rightarrow R$, skip if zero	None
BC R,b	$0 \rightarrow R(b)$	None ²
BS R,b	$1 \rightarrow R(b)$	None ³
JBC R,b	if R(b)=0, skip	None
JBS R,b	if R(b)=1, skip	None
CALL k	PC+1 → [SP], (Page, k) → PC	None
JMP k	$(Page, k) \rightarrow PC$	None
MOV A,k	k→A	None
OR A,k	$A \lor k \rightarrow A$	Z
AND A,k	$A \& k \to A$	Z
XOR A,k	$A \oplus k \to A$	Z
RETL k	$k \rightarrow A$, [Top of Stack] $\rightarrow PC$	None
SUB A,k	$k - A \rightarrow A$	Z, C, DC
ADD A,K	$k+A \rightarrow A$	Z, C, DC
BANK k	$K \rightarrow R4(7:6)$	None
	Next instruction : k kkkk kkkk kkkk PC+1→[SP], k→PC4	None
LJMP k	Next instruction : k kkkk kkkk kkkk k→PC4	None
TBRD R	If Bank 3 R6.7=0, machine code (7:0) \rightarrow R Else machine code (12:8) \rightarrow R(4:0), R(7:5)=(0,0,0)	None

² This instruction is not recommended for interrupt status register operation.
 ³ This instruction cannot operate under interrupt status register.

7 Timing Diagrams

AC Test Input/Output Waveform

AC Testing: Input are driven at 2.4V for logic "1" and 0.4V for logic "0".

Timing measurements are made at 2.0V for logic "1", and 0.8V for logic "0".

Figure 7-1 AC Test Timing Diagram

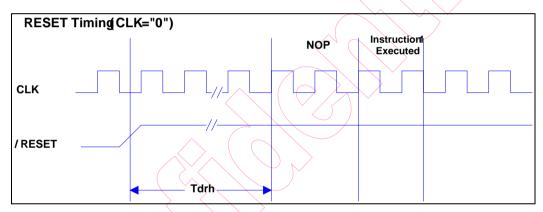


Figure 7-2 Reset Timing Diagram

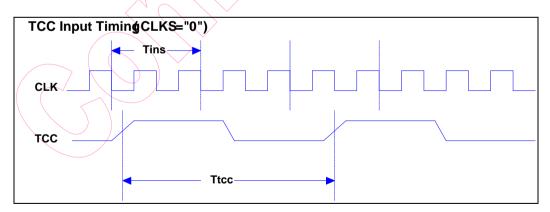


Figure 7-3 TCC Input Timing Diagram

8 Absolute Maximum Ratings

EM78F734N

Items		Rating	
Temperature under bias	-40°C	to	85°C
Storage temperature	-65°C	to	150°C
Working voltage	2.2	to	5.5V
Working frequency	DC	to	20 MHz*
Input voltage	Vss-0.3V	to	Vdd+0.5V
Output voltage	Vss-0.3V	to	Vdd+0.5V

Note: *These parameters are theoretical values and have not been tested.

9 DC Electrical Characteristics

	, vDD=3.0v±3 %, v33=0			·		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fxt	IRC: VDD to 3.3V	4 MHz, 1 MHz, 8 MHz, 455kHz	F±30%	F	F±30%	Hz
IIL	Input Leakage Current for input pins	VIN = VDD, VSS	-1	0	1	μA
VIH1	Input High Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	0.56Vdd	-	Vdd+0.3V	V
VIL1	Input Low Voltage (Schmitt trigger)	Ports 5, 6, 7, 8	-0.3V	-	0.44Vdd	۷
VIHT1	Input High Threshold Voltage (Schmitt trigger)	/RESET	0.56Vdd	-	Vdd+0.3V	۷
VILT1	Input Low Threshold Voltage (Schmitt trigger)	RESET	-0.3V	-	0.44Vdd	V
VIHT2	Input High Threshold Voltage (Schmitt trigger)	TCC, INT	0.56Vdd	-	Vdd+0.3V	۷
VILT2	Input Low Threshold Voltage (Schmitt trigger)	TCC, INT	-0.3V	-	0.44Vdd	V
IOH1	Output High Voltage (Ports 5, 6, 7, 8)	VOH = 0.9VDD	-3			mA
IOL1	Output Low Voltage (Ports 5, 7, 8)	VOL = 0.1VDD	14			mA
IPH	Pull-high current	Pull-high active, input pin at VSS		-75		μA
IPL	Pull-low current	Pull-low active, input pin at Vdd		25		μA
ICC1	Operating supply current (Normal mode)	/RESET= 'High', Fm=1MHz (IRC type), Fs on, output pin floating, WDT enabled	-	300	-	μΑ
ICC2	Operating supply current (Normal mode)	/RESET= 'High', Fm=455kHz (IRC type), Fs on, output pin floating, WDT enabled	-	150	-	μΑ

Ta=25°C, VDD=5.0V±5%, VSS=0V

Note: * The parameters are theoretical and have not been tested or verified.

* Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") column are based on hypothetical results at 25°C. These data are for design guidance only.

9.1 Data EEPROM Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Tprog	Erase/Write cycle time		-	-	-	ms
Treten	Data Retention	Vdd = 2.2V~ 5.5V Temperature = -40°C ~ 85°C	-	10	-	Years
Tendu	Endurance time		-	100K	-	Cycles

9.2 Program Flash Memory Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Tprog	Erase/Write cycle time		-	-	-	ms
Treten	Data Retention	Vdd = 5.0V Temperature = -40°C ~ 85°C	-	10	- \	Years
Tendu	Endurance time		~ - (100K	-	Cycles

9.3 A/D Converter Characteristics

Vdd=2.2V to 5.5V, Vss=0V, Ta=25°C

Parameter	Symbol	Test Conditions		Туре		
i alametei	Symbol		Min.	Тур.	Max.	Unit
	Vdd	For 5.5v Fs=100KHz, Fin=2KHz, For 2.2v Fs=50KHz, Fin=1KHz	2.2	-	5.5	V
Operating Range	V _{REFT}		2.2	-	Vdd	V
Current Consumption	lvdd	V _{REFT} = Vdd=5.5v, Fs=100KHz, Fin=2KHz	-	-	0.5	mA
	Iref	>	-	-	50	uA
Standby Current	lsb		-	-	0.1	uA
ZAI	ZAI		-	-	10k	ohm
SNR	SNR	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	70	-	-	dBc
THD	THD	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	-	-	-70	dBc
SNDR	SNDR	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	68	-	-	dBc
Worst Harmonic	WH	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	-	-	-73	dBc

SFDR	SFDR	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	73	-	-	dBc
Offset Error	OE	V _{REFT} = Vdd=3.3v, Fs=100K Hz	-	-	+/-4	LSB
Gain Error	GE	V _{REFT} = Vdd=3.3v, Fs=100K Hz	-	-	+/-8	LSB
DNL	DNL	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	-	_ <	+/-1	LSB
INL	INL	V _{REFT} = Vdd=3.3v, Fs=100KHz, Fin=2KHz	- <	- (+/-4	LSB
Conversion Rate	Fs1	Vdd=2.7~5.5v, Fin=2kHz	100			K SPS
Conversion Rate	Fs2	Vdd=2.2~2.7v, Fin=1kHz	50		-	K SPS
Power Supply Rejection Ratio	PSRR	V _{REFT} =2.2v, SVREF="0"or"1", Vdd=2.2v ~ 5.5v, Fs=50K Hz, Vin=0v ~ 2.2v	-	-	2	LSB

- Note: ¹These parameters are hypothetical (not tested) and are provided for design reference only. ²There is no current consumption when ADC is off other than minor leakage current. ³The A/D conversion result will not decrease with an increase in the input voltage, and has no missing code.
 - ⁴These parameters are subject to change without prior notice.

10 AC Electrical Characteristics

EM78F734N, $0 \le Ta \le 70^{\circ}C$, VDD=5V, VSS=0V

 $-40 \le Ta \le 85^{\circ}C$, VDD=5V, VSS=0V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dclk	Input CLK duty cycle	-	45	50	55	%
Tins	Instruction cycle time	Crystal type	100	Ι	DC	ns
11115	(CLKS="0")	RC type	500	-	DC	ns
Ttcc	TCC input period	-	(Tins+20)/N*	-<	-	ns
Tdrh	Device reset hold time	-	11.8	16.8	21.8	ms
Trst	/RESET pulse width	Ta = 25°C	2000	-		ns
Twdt	Watchdog timer period	Ta = 25°C	11.8	16.8	21.8	ms
Tset	Input pin setup time	-	- ~ / ^	0		ns
Thold	Input pin hold time	_		20		ns
Tdelay	Output pin delay time	Cload=20pF	\sim	50	-	ns

Note: These parameters are theoretical values and have not been tested. Such parameters are for design reference only.

Data in the Minimum, Typical, Maximum ("Min.", "Typ.", "Max.") columns are based on characterization results at 25°C.

* N = selected prescaler ratio

APPENDIX

A Package Type

Flash MCU	Package Type	Pin Count	Package Size
EM78F734ND20	PDIP	20	300 mil
EM78F734NSO20	SOP	20	300 mil
EM78F734ND18	PDIP	18	300 mil
EM78F734NSO18	SOP	18	300 mil
EM78F734ND16	PDIP	16	300 mil
EM78F734NSO16	SOP	16	300 mil
EM78F734NSS16	SSOP	16	150 mil

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

Pb contents should be less than 100ppm and complies with Sony specifications.

Part No.	EM78F734NS/J
Electroplate type	Pure Tin
Ingredient (%)	Sn:100%
Melting point (°C)	232°C
Electrical resistivity ($\mu\Omega$ cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%

B Package Information

B.1 EM78F734ND16 300mil

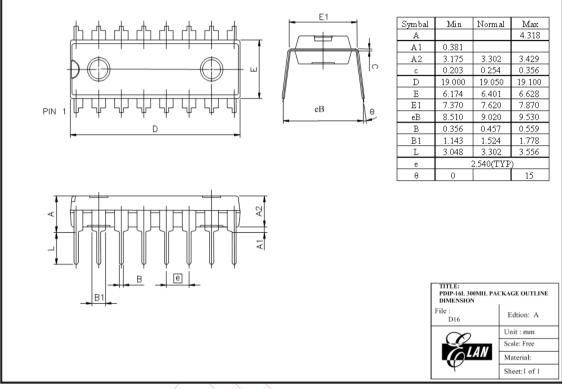


Figure B-1 EM78F734N 16-Pin PDIP Package Type

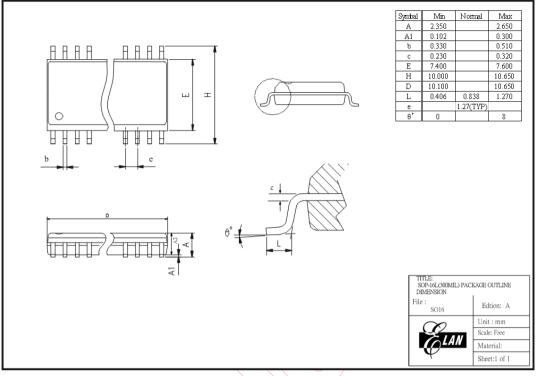


Figure B-2 EM78F734N 16-Pin SOP Package Type

B.3 EM78F734NSS16 150mil

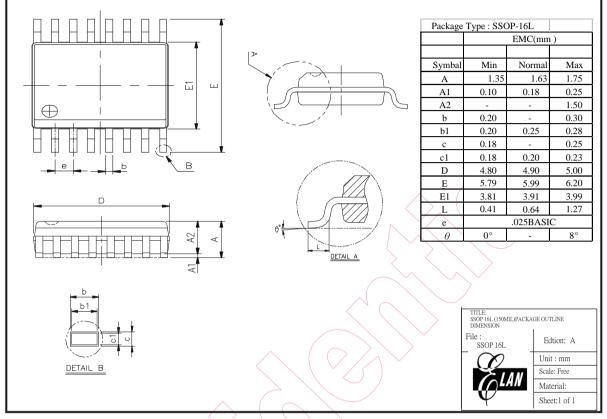


Figure B-3 EM78F734N 16-Pin SSOP Package Type

B.4 EM78F734ND18 300mil

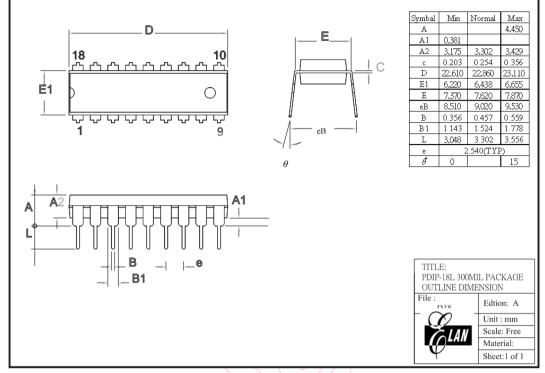


Figure B-4 EM78F734N 18-Pin PDIP Package Type

B.5 EM78F734NSO18 300mil

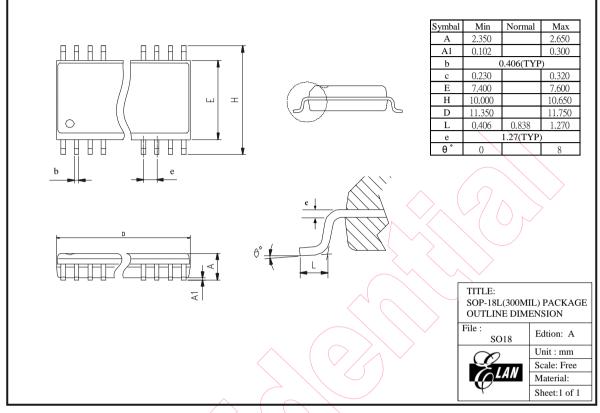


Figure B-5 EM78F734N 18-Pin SOP Package Type

B.6 EM78F734ND20 300mil

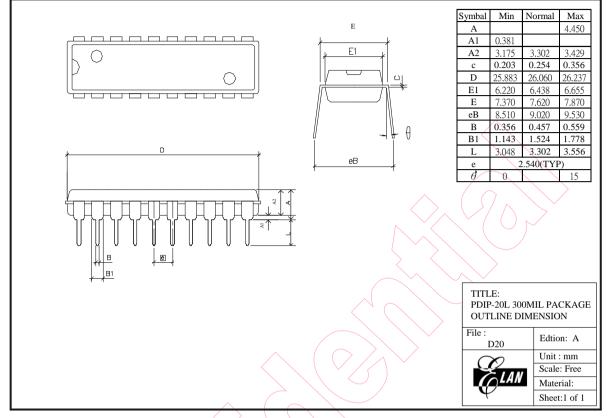


Figure B-6 EM78F734N 20-Pin PDIP Package Type

B.7 EM78F734NSO20 300mil

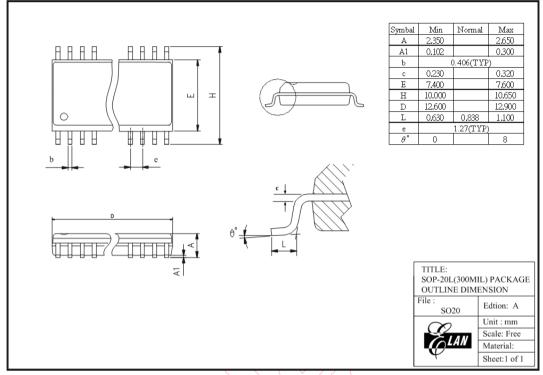


Figure B-7 EM78F734N 20-Pin SOP Package Type

C Quality Assurance and Reliability

Test Category	Test Conditions	Remarks
Solderability	Solder temperature=245±5°C, for 5 seconds up to the stopper using a rosin-type flux	-
	Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles	
	Step 2: Bake at 125°C, TD (endurance)=24 hrs	\sim
	Step 3: Soak at 30°C/60% , TD (endurance)=192 hrs	
Pre-condition	Step 4: IR flow 3 cycles	For SMD IC (such as SOP, QFP, SOJ, etc)
	(Pkg thickness \geq 2.5mm or	301, Q11, 303, etc)
	Pkg volume ≥ 350mm ³ 225±5°C)	
	(Pkg thickness ≤ 2.5mm or Pkg volume ≤ 350mm ³ 240±5°C)	
Temperature cycle test	-65°C (15mins)~150°C (15mins), 200 cycles	-
Pressure cooker test	TA =121°C, RH=100%, pressure=2 atm, TD (endurance)= 96 hrs	-
High temperature / High humidity test	TA=85°C , RH=85% [,] TD (endurance) = 168 , 500 hrs	_
High-temperature storage life	TA=150°C, TD (endurance) = 500, 1000 hrs	_
High-temperature operating life	TA=125°C, VCC = Max. operating voltage, TD (endurance) = 168, 500, 1000 hrs	_
Latch-up	TA=25°C, VCC = Max. operating voltage, 150mA/20V	_
		IP_ND,OP_ND,IO_ND
ESD (HBM)	TA=25°C, ≥ ± 3KV	IP_NS,OP_NS,IO_NS
		IP_PD,OP_PD,IO_PD,
	TA=25°C, ≥ ± 300V	IP_PS,OP_PS,IO_PS,
ESD (MM)	$ A=230, 2 \pm 3000 $	VDD-VSS(+),VDD_VSS (-) mode

C.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.

