# A96F902N

# 8-Bit Microcontroller

# Product Specification

DOC. VERSION 2.4

ELAN MICROELECTRONICS CORP. November 2012



**Trademark Acknowledgments:** IBM is a registered trademark and PS/2 is a trademark of IBM. Windows is a trademark of Microsoft Corporation. ELAN and ELAN logo

#### Copyright © 2009~2012 by ELAN Microelectronics Corporation All Rights Reserved

Printed in Taiwan

The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited. NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.



# ELAN MICROELECTRONICS CORPORATION

#### Headquarters:

No. 12, Innovation 1<sup>st</sup> Road Hsinchu Science Park Hsinchu, TAIWAN 30076 Tel: +886 3 563-9977 Fax: +886 3 563-9966 webmaster@emc.com.tw http://www.emc.com.tw

#### Korea:

#### ELAN Korea Electronics Company, Ltd.

301 Dong-A Building 632 Kojan-Dong, Namdong-ku Incheon City, KOREA Tel: +82 32 814-7730 Fax: +82 32 813-7730

#### Hong Kong:

ELAN (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG Tel: +852 2723-3376 Fax: +852 2723-7780

#### Shenzhen:

#### ELAN Microelectronics Shenzhen, Ltd.

8A Floor, Microprofit Building Gaoxin South Road 6 Shenzhen Hi-Tech Industrial Park South Area, Shenzhen CHINA 518057 Tel: +86 755 2601-0565 Fax: +86 755 2601-0500 elan-sz@elanic.com.cn

#### USA:

**ELAN Information Technology Group (U.S.A.)** PO Box 601 Cupertino, CA 95015 U.S.A. Tel: +1 408 366-8225 Fax: +1 408 366-8225

#### Shanghai:

# ELAN Microelectronics Shanghai, Ltd.

6F, Ke Yuan Building No. 5 Bibo Road Zhangjiang Hi-Tech Park Shanghai, CHINA 201203 Tel: +86 21 5080-3866 Fax: +86 21 5080-0273 elan-sh@elanic.com.cn



| 1 | Gen | eral De | escription                                            | 1  |
|---|-----|---------|-------------------------------------------------------|----|
| 2 | Fea | tures   |                                                       | 1  |
| 3 | Pin | Assigr  | nment                                                 | 2  |
| 4 | Pin | Descri  | ption                                                 | 3  |
|   | 4.1 | A96F9   | •<br>02ND16/SO16                                      | 3  |
|   | 42  | A96F9   | 02ND18/SO18                                           | 4  |
|   | 4.3 | A96F9   | 02ND20/SO20                                           | 5  |
| 5 | Blo |         |                                                       | 0  |
| J | DIU |         | Jiani                                                 |    |
| 0 | Fun | ctional |                                                       | /  |
|   | 6.1 | Opera   | tional Registers                                      | /  |
|   |     | 6.1.1   | R0 (Indirect Addressing Register)                     | 7  |
|   |     | 6.1.2   | R1 (Timer Clock/Counter)                              | 7  |
|   |     | 6.1.3   | R2 (Program Counter) & Stack                          | 7  |
|   |     | 6.1.4   | R3 (Status Register)                                  | 9  |
|   |     | 6.1.5   | R4 (RAM Select Register)                              | 10 |
|   |     | 6.1.6   | Bank 0 R5 ~ R8 (Port 5 ~ Port 8)                      | 10 |
|   |     | 6.1.7   | Bank 0 R9 TBPTL (Low Byte of Table Pointer Register)  | 10 |
|   |     | 6.1.8   | Bank 0 RA (Wake-up Control Register)                  | 10 |
|   |     | 6.1.9   | Bank 0 RB (EEPROM Control Register)                   | 11 |
|   |     | 6.1.10  | Bank 0 RC (EEPROM Address)                            | 12 |
|   |     | 6.1.11  | Bank 0 RD (EEPROM Data)                               | 12 |
|   |     | 6.1.12  | Bank 0 RE (CPU Operating Control Register)            | 12 |
|   |     | 6.1.13  | Bank 0 RF (Interrupt Status Register)                 | 13 |
|   |     | 6.1.14  | R10 ~ R3F                                             | 14 |
|   |     | 6.1.15  | Bank 1 R5 ~R7                                         | 14 |
|   |     | 6.1.16  | Bank 1 R8 TC2CR (Timer 2 Control)                     | 14 |
|   |     | 6.1.17  | Bank 1 R9 TC2DH (Timer 2 High Byte Data Buffer)       | 17 |
|   |     | 6.1.18  | Bank 1 RA TC2DL (Timer 2 Low Byte Data Buffer)        | 17 |
|   |     | 6.1.19  | Bank 1 RB ~RE                                         | 17 |
|   |     | 6.1.20  | Bank 1 RF (Interrupt Status Register)                 | 17 |
|   |     | 6.1.21  | Bank 2 R5 AISR (ADC Input Select Register)            | 18 |
|   |     | 6.1.22  | Bank 2 R6 ADCON (A/D Control Register)                | 19 |
|   |     | 6.1.23  | Bank 2 R7 ADOC (A/D Offset Calibration Register)      | 20 |
|   |     | 6.1.24  | Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)            | 20 |
|   |     | 6.1.25  | Bank 2 R9 ADDL (AD Low 2-Bit Data Buffer)             | 21 |
|   |     | 6.1.26  | Bank 2 RA, RC ~RE                                     | 21 |
|   |     | 6.1.27  | Bank 2 RB CMP3CON (Comparator 3 Control Register)     | 21 |
|   |     | 6.1.28  | Bank 2 RF (Pull-high Control Register 1)              | 22 |
|   |     | 6.1.29  | Bank 3 R5                                             | 22 |
|   |     | 6.1.30  | Bank 3 R6 TBPTH (High Byte of Table Pointer Register) | 22 |



|   |     | 6.1.31  | Bank 3 R7 CMPCON (Comparator Control Register)          | 22 |
|---|-----|---------|---------------------------------------------------------|----|
|   |     | 6.1.32  | Bank 3 R8~RC                                            | 23 |
|   |     | 6.1.33  | Bank 3 RD TC3CR (Timer 3 Control)                       | 23 |
|   |     | 6.1.34  | Bank 3 RE TC3D (Timer 3 Data Buffer)                    | 25 |
|   |     | 6.1.35  | Bank 3 RF (Pull-down Control Register 1)                | 25 |
| 6 | 6.2 | Specia  | al Function Registers                                   | 26 |
|   |     | 6.2.1   | A (Accumulator)                                         | 26 |
|   |     | 6.2.2   | CONT (Control Register)                                 | 26 |
|   |     | 6.2.3   | IOC5 ~ IOC8 (I/O Port Control Register)                 | 27 |
|   |     | 6.2.4   | IOC9                                                    | 27 |
|   |     | 6.2.5   | IOCA (WDT Control Register)                             | 27 |
|   |     | 6.2.6   | IOCB (Pull-down Control Register 2)                     | 28 |
|   |     | 6.2.7   | IOCC (Open-drain Control Register)                      | 28 |
|   |     | 6.2.8   | IOCD (Pull-high Control Register 2)                     | 28 |
|   |     | 6.2.9   | IOCE (Interrupt Mask Register 2)                        | 29 |
|   |     | 6.2.10  | IOCF (Interrupt Mask Register 1)                        | 29 |
| 6 | 6.3 | TCC/W   | VDT and Prescaler                                       | 30 |
| 6 | 6.4 | I/O Po  | rts                                                     | 31 |
|   |     | 6.4.1   | Usage of Port 6 Input Change Wake-up/Interrupt Function | 33 |
| 6 | 6.5 | Reset   | and Wake-up                                             | 34 |
|   |     | 6.5.1   | Reset                                                   | 34 |
|   |     | 6.5.2   | Summary of Wake-up and Interrupt Modes Operation        | 36 |
|   |     | 6.5.3   | Summary of Register Initial Values                      | 37 |
|   |     | 6.5.4   | Status of RST, T, and P of the Status Register          | 42 |
| 6 | 6.6 | Interru | pt                                                      | 43 |
| 6 | 6.7 | Data E  | EPROM                                                   | 44 |
|   |     | 6.7.1   | Data EEPROM Control Register                            | 45 |
|   |     |         | 6.7.1.1 RB (EEPROM Control Register)                    | 45 |
|   |     |         | 6.7.1.2 RC (128 Bytes EEPROM Address)                   | 45 |
|   |     |         | 6.7.1.3 RD (256 Bytes EEPROM Data)                      | 46 |
|   |     | 6.7.2   | Programming Step / Demonstration Example                | 46 |
| 6 | 6.8 | Analog  | g-to-Digital Converter (ADC)                            | 47 |
|   |     | 6.8.1   | ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)       | 47 |
|   |     | 6.8.2   | Bank 2 R5 AISR (ADC Input Select Register)              | 47 |
|   |     | 6.8.3   | Bank 2 R6 ADCON (A/D Control Register)                  | 48 |
|   |     | 6.8.4   | Bank 2 R7 ADOC (A/D Offset Calibration Register)        | 49 |
|   |     | 6.8.5   | ADC Data Buffer (ADDH, ADDL/R8, R9)                     | 50 |
|   |     | 6.8.6   | A/D Sampling Time                                       | 50 |
|   |     | 6.8.7   | A/D Conversion Time                                     | 50 |
|   |     | 6.8.8   | A/D Operation during Sleep Mode                         | 51 |
|   |     | 6.8.9   | Programming Steps/Considerations                        | 51 |



|    | 6.9  | Timer/  | Counter 2                                       | . 54    |
|----|------|---------|-------------------------------------------------|---------|
|    |      | 6.9.1   | Timer Mode                                      | 54      |
|    |      | 6.9.2   | Counter Mode                                    | 55      |
|    |      | 6.9.2   | Window Mode                                     | 55      |
|    | 6.10 | Timer/  | Counter 3                                       | . 56    |
|    | 6.11 | Compa   | arator                                          | . 57    |
|    |      | 6.11.1  | External Reference Signal                       | 58      |
|    |      | 6.11.2  | Comparator Outputs                              | 58      |
|    |      | 6.11.3  | Using Comparator as an Operation Amplifier      | 58      |
|    |      | 6.11.4  | Comparator Interrupt                            | 59      |
|    |      | 6.11.5  | Wake-up from Sleep Mode                         | 59      |
|    | 6.12 | Oscilla | ator                                            | . 59    |
|    |      | 6.12.1  | Oscillator Modes                                | 59      |
|    |      | 6.12.2  | Crystal Oscillator/Ceramic Resonators (Crystal) | 60      |
|    |      | 6.12.3  | External RC Oscillator Mode                     | 61      |
|    |      | 6.12.4  | Internal RC Oscillator Mode                     | 62      |
|    | 6.13 | Code (  | Option Register                                 | . 63    |
|    |      | 6.13.1  | Code Option Register (Word 0)                   | 63      |
|    |      | 6.13.2  | Code Option Register (Word 1)                   | 64      |
|    |      | 6.13.3  | Customer ID Register (Word 2)                   | 65      |
|    | 6.14 | Power   | on Considerations                               | . 66    |
|    | 6.15 | Extern  | al Power-on Reset Circuit                       | . 66    |
|    | 6.16 | Residu  | ue-Voltage Protection                           | . 66    |
|    | 6.17 | Instruc | tion Set                                        | . 67    |
| 7  | Timi | ina Dia | agrams                                          | 70      |
| Q  | Abe  | aluta N | Navimum Patinge                                 | 71      |
| 0  |      |         | a l Okana stania (in                            | - 7 - 1 |
| 9  | DCE  | Electri | cal Unaracteristic                              | .71     |
|    | 9.1  | Data E  | EPROM Electrical Characteristics                | .72     |
|    | 9.2  | Progra  | m Flash Memory Electrical Characteristics       | . 72    |
|    | 9.3  | A/D Co  | onverter Characteristics                        | . 73    |
|    | 9.4  | Compa   | arator Characteristics                          | . 74    |
| 10 | AC E | Electri | cal Characteristics                             | .74     |
|    | 10.1 | Device  | e Characteristics                               | .75     |
|    |      |         |                                                 | -       |



# APPENDIX

| Α | Package Type                      |  |
|---|-----------------------------------|--|
| В | Package Information               |  |
|   | B.1 A96F902ND16 300mil            |  |
|   | B.2 A96F902NSO16 300mil           |  |
|   | B.3 A96F902ND18 300mil            |  |
|   | B.4 A96F902NSO18 300mil           |  |
|   | B.5 A96F902ND20 300mil            |  |
|   | B.6 A96F902NSO20 300mil           |  |
| С | Quality Assurance and Reliability |  |
|   | C.1 Address Trap Detect           |  |

# Specification Revision History

| Doc. Version | Revision Description                                                                                                                                                                                              | Date       |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.0          | Initial version                                                                                                                                                                                                   | 2009/05/27 |
| 2.0          | <ol> <li>Deleted ICE652N information and PAGE instruction.</li> <li>Added CPU operation with Green/Idle mode,<br/>LCALL/LJMP/TBRD instructions.</li> <li>Proclaimed use ICE660N to simulates A96F902N.</li> </ol> | 2009/08/25 |
| 2.1          | Deleted R3 bit5 PS0.                                                                                                                                                                                              | 2009/10/09 |
| 2.2          | Modified ICC1 and ICC2 current                                                                                                                                                                                    | 2010/08/13 |
| 2.3          | ModifiedTable6-8,C1 and C2 value.                                                                                                                                                                                 | 2012/03/13 |
| 2.4          | Added device characteristics                                                                                                                                                                                      | 2012/11/22 |



# **1** General Description

The A96F902N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS technology, and high noise immunity. It has an on-chip 2K×13-bit Electrical Flash Memory and 128×8-bit in system programmable EEPROM. It provides three protection bits to prevent intrusion of user's Flash memory code. Twelve Code option bits are also available to meet your requirements.

With its enhanced Flash-ROM feature, the A96F902N can provide a convenient way of developing and verifying user's programs. Moreover, this Flash-ROM device offers the advantages of easy and effective program updates with development and programming tools. You can avail yourself of the ELAN Writer to easily program your development code.

# 2 Features

#### CPU Configuration:

- 2K×13 bits Flash memory
- 144×8 bits on-chip registers (SRAM)
- 128 bytes in-system programmable EEPROM \*Endurance: 100,000 write/erase cycles
- More than 10 years data retention
- 8-level stacks for subroutine nesting
- Less than 2 mA at 5V/4MHz
- Typically 20 μA, at 3V/32kHz
- Typically 2  $\mu$ A, during Sleep mode

#### ■ I/O Port Configuration:

- 3 bidirectional I/O ports
- Wake-up port: P6
- High sink port: P6
- 12 Programmable pull-down I/O pins
- 8 programmable pull-high I/O pins
- 4 programmable open-drain I/O pins
- External interrupt: P60

#### Operating Voltage Range:

- Operating voltage: 2.4V~5.5V at -40°C ~85°C (Industrial)
- Operating voltage: 2.2V~5.5V ay 0°C ~70°C (Commercial)
- Operating Frequency Range (base on two clocks):

 Crystal mode: DC ~ 20 MHz @ 5V

- DC ~ 8 MHz @ 3V
- DC ~ 4 MHz @ 2.2V
- ERC mode: DC ~ 20 MHz @ 5V DC ~ 8 MHz @ 3V
  - DC ~ 4 MHz @ 2.2V
- IRC Drift Rate (Ta=25°C, VDD=5V±5%, VSS=0V)

| Internal        | Drift Rate                  |                        |         |        |  |  |  |
|-----------------|-----------------------------|------------------------|---------|--------|--|--|--|
| RC<br>Frequency | Temperature<br>(-40°C+85°C) | Voltage<br>(2.2V~5.5V) | Process | Total  |  |  |  |
| 1 MHz           | ±3%                         | ±4%                    | ±2.5%   | ±9.5%  |  |  |  |
| 4 MHz           | ±3%                         | ±4%                    | ±2.5%   | ±9.5%  |  |  |  |
| 8 MHz           | ±3%                         | ±5%                    | ±2.5%   | ±10.5% |  |  |  |
| 16 MHz          | ±3%                         | ±5%                    | ±2.5%   | ±10.5% |  |  |  |

• TC2: Timer/Counter/Window

#### One 8-bit Timer/Counter

• TC3: Timer/Counter/PDO (programmable divider output) /PWM (pulse width modulation)

#### Product Specification (V2.4) 11.22.2012

(This specification is subject to change without further notice)

- Two Pairs of OP Amplifier or Comparator (CMP1,2)
- One Pair of Comparator (CMP3)
- Nine Available Interrupts:
- Internal interrupts: 4
- External interrupts: 5
- 8 Channels Analog-to-Digital Converter with 10-Bit Resolution
- Peripheral Configuration:
- 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt
  Power down (Sleep) mode
- 4 programmable Level Voltage Reset (LVR): 4.0V, 3.5V, 2.7V, and POR
- Three security registers to prevent intrusion of Flash memory codes
- One configuration register to accommodate user's requirements
- 2/4/8/16 clocks per instruction cycle selected by code option
- High EFT immunity
- There are two sub-frequencies; 28kHz and 16kHz. The 16kHz is provided by dividing 128kHz

#### Single Instruction Cycle Commands

Four Crystal Range in Oscillator Mode

| Crystal Range  | Oscillator Mode |
|----------------|-----------------|
| 20 MHz ~ 6 MHz | HXT             |
| 6 MHz ~ 1 MHz  | ХТ              |
| 1MHz ~ 100kHz  | LXT1            |
| 32.768kHz      | LXT2            |

Programmable Free Running Watchdog Timer

#### Package Type:

- 16-pin DIP 300mil: A96F902ND16
- 16-pin SOP 300mil: A96F902NSO16
- 18-pin DIP 300mil: A96F902ND18
- 18-pin SOP 300mil: A96F902NSO18
- 20-pin DIP 300 mil: A96F902ND20
- 20-pin SOP 300mil: A96F902NSO20

#### NOTE

These are Green Products which do not contain hazardous substances



# 3 Pin Assignment









# 4 Pin Description

# 4.1 A96F902ND16/SO16

| Symbol     | Pin No.                  | Туре | Function                                                                                                                                                                                              |
|------------|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 10                       |      | External clock crystal resonator oscillator input pin                                                                                                                                                 |
| USCI/RCOUT | 13                       | 1/0  | Clock output from internal RC oscillator                                                                                                                                                              |
|            | 14                       | 1/0  | Clock output from crystal oscillator                                                                                                                                                                  |
| USCO/ERCIN | 14                       | 1/0  | External RC oscillator clock input pin                                                                                                                                                                |
| тсс        | 3                        | I    | Real time clock/counter, Schmitt trigger input pin.<br>Must be tied to VDD or VSS if not in use.                                                                                                      |
|            |                          |      | Schmitt trigger input pin. If this pin remains at logic low, the controller is reset.                                                                                                                 |
| /RESET     | 4                        | 1    | */RESET is /RESET pin for Writer programming (Required).                                                                                                                                              |
|            |                          |      | * For ISP (In System Programming) design rules. Please<br>refer to "EM78F6xxN/5xxN MCU Programming" application<br>notes.                                                                             |
|            |                          |      | Bidirectional 8-bit input/output pins                                                                                                                                                                 |
|            |                          |      | P50~P53 can be used as pull-down pins.                                                                                                                                                                |
| P50~P51    | 15, 16<br>1, 2<br>13, 14 | I/O  | P50 can be used as external reference voltage for ADC.                                                                                                                                                |
| P54~P55    |                          |      | P51 can be used as OP2 Amplifier Output.                                                                                                                                                              |
|            |                          |      | P52 can be used as OP2 Amplifier non-inverting input.                                                                                                                                                 |
|            |                          |      | P53 can be used as OP Amplifier inverting input.                                                                                                                                                      |
| P60~P62    | 6~8                      | I/O  | Bidirectional 3-bit input/output ports. These can be pull-high,<br>pull-down or can be open drain by software programming.<br>These can also be used as 4-channel 10-bit resolution A/D<br>converter. |
|            |                          |      | P60 can be used as external interrupt.                                                                                                                                                                |
|            |                          |      | P70 ~P72, P77 are bidirectional I/O ports.                                                                                                                                                            |
|            |                          |      | P70 can be used as OP1 Amplifier Output.                                                                                                                                                              |
|            |                          |      | P71 can be used as OP1 Amplifier non-inverting input.                                                                                                                                                 |
| P70~P72    | 11~9                     | 1/0  | P72 can be used as OP1 Amplifier inverting input.                                                                                                                                                     |
| P77        | 3                        | 1/0  | P77 can be used as 4-channel 10-bit resolution A/D converter                                                                                                                                          |
|            |                          |      | P70~P72 can be used as pull-high or pull-down pins.                                                                                                                                                   |
|            |                          |      | * P70 is DATA pin for Programming.                                                                                                                                                                    |
|            |                          |      | * P71 is CLK pin for Programming.                                                                                                                                                                     |
| P83        | 4                        | I/O  | P83 is a bidirectional I/O port.                                                                                                                                                                      |
| VDD        | 12                       | -    | Power supply                                                                                                                                                                                          |
| VSS        | 5                        | -    | Ground                                                                                                                                                                                                |



# 4.2 A96F902ND18/SO18

| Symbol     | Pin No.                  | Туре | Function                                                                                                                                                                                              |
|------------|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 15                       | 1/0  | External clock crystal resonator oscillator input pin                                                                                                                                                 |
| 030/////   | 15                       | 1/0  | Clock output from internal RC oscillator                                                                                                                                                              |
| OSCO/ERCin | 16                       | 1/0  | Clock output from crystal oscillator                                                                                                                                                                  |
|            | 10                       |      | External RC oscillator clock input pin                                                                                                                                                                |
| тсс        | 3                        | I    | Real time clock/counter, Schmitt trigger input pin.<br>Must be tied to VDD or VSS if not in use.                                                                                                      |
|            |                          |      | Schmitt trigger input pin. If this pin remains at logic low, the controller is reset.                                                                                                                 |
| /RESET     | 4                        | I    | */RESET is /RESET pin for Writer programming<br>(Required).                                                                                                                                           |
|            |                          |      | * For ISP (In System Programming) design rules. Please<br>refer to "EM78F6xxN/5xxN MCU Programming"<br>application notes.                                                                             |
|            |                          |      | Bidirectional 8-bit input/output pins                                                                                                                                                                 |
|            |                          | I/O  | P50~P53 can be used as pull-down pins.                                                                                                                                                                |
| P50~P51    | 17, 18<br>1, 2<br>15, 16 |      | P50 can be used as external reference voltage for ADC                                                                                                                                                 |
| P54~P55    |                          |      | P51 can be used as OP2 Amplifier Output                                                                                                                                                               |
|            |                          |      | P52 can be used as OP2 Amplifier non-inverting input                                                                                                                                                  |
|            |                          |      | P53 can be used as OP Amplifier inverting input                                                                                                                                                       |
| P60~P63    | 6~9                      | I/O  | Bidirectional 4-bit input/output ports. These can be<br>pull-high, pull-down or can be open drain by software<br>programming. These can also be used as 6-channel<br>10-bit resolution A/D converter. |
|            |                          |      | P60 can be used as external interrupt                                                                                                                                                                 |
|            |                          |      | P70 ~P73, P77 are bidirectional I/O ports.                                                                                                                                                            |
|            |                          |      | P70 can be used as OP1 Amplifier Output.                                                                                                                                                              |
|            |                          |      | P71 can be used as OP1 Amplifier non-inverting input.                                                                                                                                                 |
| P70~P73    | 13~10                    | 1/0  | P72 can be used as OP1 Amplifier inverting input.                                                                                                                                                     |
| P77        | 3                        | 1/0  | P73 and P77 can be used as 6-channel 10-bit resolution A/D converter.                                                                                                                                 |
|            |                          |      | P70~P73 can be used as pull-high or pull-down pins.                                                                                                                                                   |
|            |                          |      | * P70 is DATA pin for Programming.                                                                                                                                                                    |
|            |                          |      | * P71 is CLK pin for Programming.                                                                                                                                                                     |
| P83        | 4                        | I/O  | P83 is a bidirectional I/O port.                                                                                                                                                                      |
| VDD        | 14                       | -    | Power supply                                                                                                                                                                                          |
| VSS        | 5                        | -    | Ground                                                                                                                                                                                                |



# 4.3 A96F902ND20/SO20

| Symbol                                   | Pin No.                           | Туре | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|-----------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OSCI/RCOUT                               | 16                                | I/O  | External clock crystal resonator oscillator input pi<br>Clock output from internal RC oscillator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OSCO/ERCin                               | 17                                | I/O  | Clock output from crystal oscillator<br>External RC oscillator clock input pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| тсс                                      | 4                                 | I    | Real time clock/counter, Schmitt trigger input pin.<br>Must be tied to VDD or VSS if not in use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| /RESET                                   | 5                                 | Ι    | Schmitt trigger input pin. If this pin remains at logic low,<br>the controller is reset.<br>*/RESET is /RESET pin for Writer programming<br>(Required).<br>* For ISP (In System Programming) design rules. Please<br>refer to "EM78F6xxN/5xxN MCU Programming"<br>application notes.                                                                                                                                                                                                                                                                                    |
| P50~P51<br>P52~P53<br>P54~P55<br>P56~P57 | 18, 19<br>2, 3<br>16, 17<br>1, 20 | I/O  | <ul> <li>Bidirectional 8-bit input/output pins.</li> <li>P50~P53 can be used as pull-down pins.</li> <li>P56~P57 can be used as 8-channel 10-bit resolution A/D converter.</li> <li>P50 can be used as external reference voltage for ADC</li> <li>P51 can be used as OP2 Amplifier Output.</li> <li>P52 can be used as OP2 Amplifier non-inverting input.</li> <li>P53 can be used as OP Amplifier inverting input.</li> <li>P56 can be used as 16-bit timer/counter.</li> <li>P57 can be used as 8-bit timer/counter or programmable divider output (PDO).</li> </ul> |
| P60~P63                                  | 7~10                              | I/O  | Bidirectional 5-bit input/output ports. These can be<br>pull-high, pull-down or can be open drain by software<br>programming. These can also be used as 8-channel<br>10-bit resolution A/D converter.<br>P60 can be used as external interrupt.                                                                                                                                                                                                                                                                                                                         |
| P70~P73<br>P77                           | 14~11<br>4                        | I/O  | <ul> <li>P70 ~P73, P77 are bidirectional I/O ports.</li> <li>P70 can be used as OP1 Amplifier Output.</li> <li>P71 can be used as OP1 Amplifier non-inverting input.</li> <li>P72 can be used as OP1 Amplifier inverting input.</li> <li>P73 and P77 can be used as 8-channel 10-bit resolution A/D converter.</li> <li>P70~P73 can be used as pull-high or pull-down pins.</li> <li>* P70 is DATA pin for Programming.</li> <li>* P71 is CLK pin for Programming.</li> </ul>                                                                                           |
| P83                                      | 5                                 | I/O  | P83 is a bidirectional I/O port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VDD                                      | 15                                | -    | Power supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VSS                                      | 6                                 | -    | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



# 5 Block Diagram



Figure 5-1 A96F902N Functional Block Diagram





# 6 Functional Description

# 6.1 Operational Registers

# 6.1.1 R0 (Indirect Addressing Register)

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction using R0 as a pointer actually accesses the data pointed by the RAM Select Register (R4).

# 6.1.2 R1 (Timer Clock/Counter)

R1 is incremented by an external signal edge, which is defined by TE bit (CONT-4) through the TCC pin, or by the instruction cycle clock. It is writable and readable as any other registers. It is defined by resetting PSTE (CONT-3).

The prescaler is assigned to TCC if the PSTE bit (CONT-3) is reset. The contents of the prescaler counter are cleared only when the TCC register is written with a value.

# 6.1.3 R2 (Program Counter) & Stack

Depending on the device type, R2 and hardware stack are 11-bit wide. The structure is depicted in Figure 6-1 below.

The configuration structure generates 2K×13 bits of on-chip Flash ROM addresses to the relative programming instruction codes. One program page is 1024 words long.

R2 is set as all "0"s when under a reset condition.

"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows PC to go to any location within a page (1K).

"CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within a page.

"LJMP" instruction allows direct loading of the lower 11 program counter bits. Thus, "LJMP" allows PC to go to any location within 2K.

"LCALL" instruction loads the lower 11 bits of the PC, and then PC+1 is pushed into the stack. Thus, the subroutine entry address can be located anywhere within 2K.

"RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level stack.

"ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.

"MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits of the PC won't be changed.



Any instruction, except "ADD R2,A;" that is written to R2 (e.g., "MOV R2, A", "BC R2, 6") will cause the ninth bit and the tenth bit (A8~A9) of the PC to remain unchanged.

All instructions are single instruction cycle (fclk/2, fclk/4, fclk/8 or fclk/16) except for the instruction that would change the contents of R2. Such instruction will need one more instruction cycle.



Figure 6-1 Program Counter Organization



|     |             | Register<br>Bank 0                         | Register<br>Bank 1                    | Register<br>Bank 2                      | Register<br>Bank 3                 | Control<br>Register        |
|-----|-------------|--------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------|----------------------------|
| Add | Iress       |                                            |                                       |                                         |                                    |                            |
| C   | )1          | R1 (TCC Buffer)                            |                                       |                                         |                                    |                            |
| 0   | )2          | R2 (PC)                                    |                                       |                                         |                                    |                            |
| C   | )3          | R3 (STATUS)                                |                                       |                                         |                                    |                            |
| 0   | )4          | R4 (RSR, Bank Select)                      | R4 (7, 6) (0, 1)                      | (1, 0)                                  | (1, 1)                             |                            |
| C   | )5          | R5 (Port 5 I/O Data)                       | R5 (Reserved)                         | R5 (ADC Input Select<br>Register)       | R5 (Reserved)                      | IOC5 (Port 5 I/O Control)  |
| C   | )6          | R6 (Port 6 I/O Data)                       | R6 (Reserved)                         | R6 (ADC Control<br>Register)            | R6(TBPTH)                          | IOC6 (Port 6 I/O Control)  |
| C   | )7          | R7 (Port 7 I/O Data)                       | R7 (Reserved)                         | R7 (ADC Offset<br>Calibration Register) | R7(Comparator<br>Control Register) | IOC7 (Port 7 I/O Control)  |
| C   | 8           | R8 (Port 8 I/O Data)                       | R8 (Timer 2 Control)                  | R8 (AD high 8-bit Data<br>Buffer)       | R8 (Reserved)                      | IOC8 (Port 8 I/O Control)  |
| C   | 9           | R9 ( TBPTL )                               | R9 (Timer 2 High byte<br>Data Buffer) | R9 (AD low 2-bit Data<br>Buffer)        | R9 (Reserved)                      | IOC9 (Reserved)            |
| 0   | A           | RA (Wake control<br>Register)              | RA (Timer 2 Low byte<br>Data Buffer)  | RA (Reserved)                           | RA (Reserved)                      | IOCA (WDT Control)         |
| 0   | в           | RB (EEPROM<br>Control Register)            | RB ( Reserved )                       | RB(Comparator3)<br>Control Register)    | RB (Reserved)                      | IOCB (Pull-down Control 2) |
| 0   | C           | RC (EEPROM Address<br>Register)            | RC (Reserved)                         | RC (Reserved)                           | RC (Reserved)                      | IOCC (Open Drain Control)  |
| 0   | D           | RD (EEPROM Data Register)                  | RD(Reserved)                          | RD (Reserved)                           | RD (Timer 3 Control)               | IOCD (Pull-high Control 2) |
| 0   | E           | RE ( CPU Operating )<br>Control Register ) | RE (Reserved)                         | RE (Reserved)                           | RE (Timer 3 Data Buffer)           | IOCE (Interrupt Mask 2)    |
| o   | )F          | RF (Interrupt Flag 1)                      | RF (Interrupt Flag 2)                 | RF (Pull-high Control<br>Register 1)    | RF (Pull-down Control Register 1)  | IOCF (Interrupt Mask 1)    |
| 1   | 0<br>:<br>F |                                            | 16 Byte Common re                     | gister                                  |                                    |                            |
| 2   |             | Bank 0<br>32x8                             | Bank 1<br>32x8                        | Bank 2<br>32x8                          | Bank 3<br>32x8                     |                            |

Figure 6-2 Data Memory Configuration

# 6.1.4 R3 (Status Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | Т     | Р     | Z     | DC    | С     |

Bit 7 ~ Bit 5: Not used, set to "0" at all time

### Bit 4 (T): Time-out bit

Set to "1" with the "SLEP" and "WDTC" commands, or during power up and reset to "0" by WDT time-out.



| Bit 3 (P):   | Power down bit                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------|
|              | Set to " <b>1</b> " during power on or by a "WDTC" command and reset to " <b>0</b> " by a "SLEP" command. |
| Bit 2 (Z):   | Zero flag                                                                                                 |
|              | Set to "1" if the result of an arithmetic or logic operation is zero.                                     |
| Bit 1 (DC):  | Auxiliary carry flag                                                                                      |
| Bit 0 (C):   | Carry flag                                                                                                |
| 6.1.5 R4 (RA | M Select Register)                                                                                        |
| Bits 7 ~ 6:  | Used to select Bank 0 ~ Bank 3                                                                            |
| Bits 5~0:    | Used to select registers (Address: 00~3F) in indirect addressing                                          |

See the data memory configuration in Figure 6-2 above.

# 6.1.6 Bank 0 R5 ~ R8 (Port 5 ~ Port 8)

mode.

R5 ~ R7 are I/O registers.

## 6.1.7 Bank 0 R9 TBPTL (Low Byte of Table Pointer Register)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RBit 7 | RBit 6 | RBit 5 | RBit 4 | RBit 3 | RBit 2 | RBit 1 | RBit 0 |

## 6.1.8 Bank 0 RA (Wake-up Control Register)

| Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0 |
|--------|-------|-------|-------|-------|--------|--------|-------|
| CMP2WE | ICWE  | ADWE  | EXWE  | -     | CMP1WE | CMP3WE | -     |

Bit 7 (CMP2WE): Comparator 2 wake-up enable bit

0: Disable Comparator 2 wake-up

1: Enable Comparator 2 wake-up

- Bit 6 (ICWE): Port 6 input status change wake-up enable bit
  - 0: Disable Port 6 input status change wake-up
  - 1: Enable Port 6 input status change wake-up
- Bit 5 (ADWE): ADC wake-up enable bit

0: Disable ADC wake-up

1: Enable ADC wake-up

When ADC completed status is used to enter the interrupt vector or to wake up the A96F902N from Sleep, with A/D conversion running, the ADWE bit must be set to "Enable".



| Bit 4 (EXWE):   | External wake-up enable bit                 |
|-----------------|---------------------------------------------|
|                 | <b>0:</b> Disable External /INT pin wake-up |
|                 | 1: Enable External /INT pin wake-up         |
| Bit 2 (CMP1WE)  | Comparator 1 wake-up enable bit             |
|                 | 0: Disable Comparator 1 wake-up             |
|                 | 1: Enable Comparator 1 wake-up              |
| Bit 1 (CMP3WE): | Comparator 3 wake-up enable bit             |
|                 | 0: Disable Comparator 3 wake-up             |
|                 | 1: Enable Comparator 3 wake-up              |
| Bits 3, 0:      | Not used, set to " <b>0</b> " at all time   |

# 6.1.9 Bank 0 RB (EEPROM Control Register)

|                                 | Bit 7                                                    | Bit 6          | Bit 5                                    | Bit 4                  | Bit 3         | Bit 2       | Bit 1      | Bit 0      |  |  |
|---------------------------------|----------------------------------------------------------|----------------|------------------------------------------|------------------------|---------------|-------------|------------|------------|--|--|
|                                 | RD                                                       | WR             | EEWE                                     | EEDF                   | EEPC          | -           | -          | -          |  |  |
| Bi                              | Bit 7 (RD): Read control register                        |                |                                          |                        |               |             |            |            |  |  |
|                                 |                                                          | <b>0</b> : I   | Does not e                               | xecute EEF             | PROM read     | k           |            |            |  |  |
|                                 | 1: Read EEPROM content (RD can be set by software, RD is |                |                                          |                        |               |             |            |            |  |  |
|                                 |                                                          |                | cleared by                               | hardware               | after Read    | instruction | is complet | ed).       |  |  |
| Bi                              | t 6 (WR)                                                 | : Wr           | ite control r                            | egister                |               |             |            |            |  |  |
|                                 |                                                          | 0: \           | Write cycle                              | to the EEF             | PROM is co    | mpleted.    |            |            |  |  |
|                                 |                                                          | 1:             | nitiate a wi                             | rite cycle (V          | VR can be     | set by soft | ware. WR   | is cleared |  |  |
|                                 |                                                          | ł              | oy hardwar                               | e after Writ           | te cycle is o | completed)  |            |            |  |  |
| Bi                              | t 5 (EEV                                                 | <b>/E):</b> EE | PROM Wri                                 | te Enable b            | oit           |             |            |            |  |  |
|                                 |                                                          | 0: \           | <b>0:</b> Write to EEPROM is prohibited. |                        |               |             |            |            |  |  |
|                                 |                                                          | 1: /           | Allows EEF                               | PROM write             | e cycles      |             |            |            |  |  |
| Bi                              | t 4 (EED                                                 | F): EE         | PROM det                                 | ect flag               |               |             |            |            |  |  |
|                                 |                                                          | 0: \           | <b>0:</b> Write cycle is completed.      |                        |               |             |            |            |  |  |
|                                 |                                                          | 1: \           | 1: Write cycle is unfinished.            |                        |               |             |            |            |  |  |
| Bi                              | t 3 (EEP                                                 | C): EE         | PROM pov                                 | ver-down c             | ontrol bit    |             |            |            |  |  |
| <b>0:</b> Switch off the EEPROM |                                                          |                |                                          |                        |               |             |            |            |  |  |
|                                 |                                                          | 1:             | EEPROM is                                | s operating            | I.            |             |            |            |  |  |
| Bi                              | its 2 ~ 0:                                               | No             | t used, set                              | to " <b>0</b> " at all | time          |             |            |            |  |  |



# 6.1.10 Bank 0 RC (EEPROM Address)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | EE_A6 | EE_A5 | EE_A4 | EE_A3 | EE_A2 | EE_A1 | EE_A0 |

Bits 6 ~ 0: EEPROM address

# 6.1.11 Bank 0 RD (EEPROM Data)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EE_D7 | EE_D6 | EE_D5 | EE_D4 | EE_D3 | EE_D2 | EE_D1 | EE_D0 |

Bits 7 ~ 0: EEPROM data

## 6.1.12 Bank 0 RE (CPU Operating Control Register)

| Bit 7 | Bit 6   | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|---------|-------|-------|-------|-------|-------|-------|
| -     | TIMERSC | CPUS  | IDLE- | -     |       |       |       |

Bit 7: Not used, set to "0" at all time

Bit 6 (TIMERSC): TCC, TC2, TC3 clock source select

0: Fs. Fs: sub frequency for WDT internal RC time base

1: Fm. Fm: main-oscillator clock

Bit 5 (CPUS): CPU Oscillator Source Select

0: S ub-oscillator (fs)

1: M ain oscillator (fosc)

When CPUS=0, the CPU oscillator will select the sub-oscillator and the **main oscillator is stopped.** 

Bit 4 (IDLE): Idle Mode Enable Bit. This bit decides the Idle mode status under SLEP instruction.

**0:** IDLE="**0**"+SLEP instruction  $\rightarrow$  Sleep mode

**1:** IDLE="**1**"+SLEP instruction  $\rightarrow$  Idle mode









## 6.1.13 Bank 0 RF (Interrupt Status Register)

| Bit 7       | Bit 6        | Bit 5        | Bit 4           | Bit 3               | Bit 2        | Bit 1 | Bit 0 |
|-------------|--------------|--------------|-----------------|---------------------|--------------|-------|-------|
| CMPIF3      | ADIF         | -            | -               | -                   | EXIF         | ICIF  | TCIF  |
| NOTE: "1" r | neans with i | nterrupt req | uest " <b>(</b> | <b>)</b> " means no | interrupt oc | curs  |       |

Bit 7 (CMPIF3): Comparator 3 Interrupt Flag. Set when a change occurs in the Comparator 3 output. Reset by software.

- **Bit 6 (ADIF):** Interrupt flag for analog to digital conversion. Set when AD conversion is completed, reset by software.
- Bits 5~3: Not used, set to "0" at all time
- **Bit 2 (EXIF):** External Interrupt Flag. Set by a falling edge on /INT pin, reset by software.
- **Bit 1 (ICIF):** Port 6 input status change interrupt flag. Set when Port 6 input changes, reset by software.
- **Bit 0 (TCIF):** TCC Overflow Interrupt Flag. Set when TCC overflows, reset by software.

Bank 0 RF can be cleared by instruction but cannot be set.

IOCF is the interrupt mask register.

**NOTE** The result of reading Bank 0 RF is the "logic AND" of Bank 0 RF and IOCF.



# 6.1.14 R10 ~ R3F

These are all 8-bit general-purpose registers.

### 6.1.15 Bank 1 R5 ~R7

**Reserved registers** 

# 6.1.16 Bank 1 R8 TC2CR (Timer 2 Control)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1  | Bit 0  |
|-------|-------|-------|-------|-------|--------|--------|--------|
| RCM1  | RCM0  | TC2ES | TC2M  | TC2S  | TC2CK2 | TC2CK1 | TC2CK0 |

#### Bit 7 and Bit 6 (RCM1, RCM0): IRC mode select bits

| Writer      | Bank1 | R8<7,6> |            | Operating Voltage |             |  |
|-------------|-------|---------|------------|-------------------|-------------|--|
| Trim<br>IRC | RCM1  | RCM0    | Frequency  | Range             | Stable Time |  |
|             | 0     | 0       | 4MHz±2.5%  | 2.2V~5.5V         | <5µs        |  |
|             | 0     | 1       | 16MHz±10%  | 4.5V~5.5V         | <1.5µs      |  |
| 4101112     | 1     | 0       | 8MHz±10%   | 3.0V~5.5V         | <3µs        |  |
|             | 1     | 1       | 1MHz±10%   | 2.2V~5.5V         | <22µs       |  |
|             | 0     | 0       | 4MHz±10%   | 2.2V~5.5V         | <6µs        |  |
| 16111-      | 0     | 1       | 16MHz±2.5% | 4.5V~5.5V         | <1.25µs     |  |
|             | 1     | 0       | 8MHz±10%   | 3.0V~5.5V         | <3µs        |  |
|             | 1     | 1       | 1MHz±10%   | 2.2V~5.5V         | <22µs       |  |
|             | 0     | 0       | 4MHz±10%   | 2.2V~5.5V         | <6µs        |  |
|             | 0     | 1       | 16MHz±10%  | 4.5V~5.5V         | <1.5µs      |  |
| OIVIT IZ    | 1     | 0       | 8MHz±2.5%  | 3.0V~5.5V         | <2.5µs      |  |
|             | 1     | 1       | 1MHz±10%   | 2.2V~5.5V         | <22µs       |  |
|             | 0     | 0       | 4MHz±10%   | 2.2V~5.5V         | <6µs        |  |
| 1₩Η→        | 0     | 1       | 16MHz±10%  | 4.5V~5.5V         | <1.5µs      |  |
|             | 1     | 0       | 8MHz±10%   | 3.0V~5.5V         | <3µs        |  |
|             | 1     | 1       | 1MHz±2.5%  | 2.2V~5.5V         | <20µs       |  |

#### NOTE

- BANK1 R8<7,6> of the initialized values are kept the same as WORD 1<3,2>.
- After A Frequency switches to B Frequency, F902N needs to hold some stable time on B frequency.

**Ex:** Writer trim IRC 4MHz  $\rightarrow$  BANK1 R8<7,6> set to "10"  $\rightarrow$  holds 3  $\mu$ s  $\rightarrow$  F902N works on 8MHz  $\pm$  10%.

Code option Word 1 COBS=0:

The R8<7,6> of the initialized values will remain the same as Word 1<3,2>.

The R8<7,6> cannot change frequency.



Code option Word 1 COBS=1:

The R8<7,6> of the initialized values will remain the same Word as 1<3,2>.

The R8<7,6> can change when user wants to work on other IRC frequency.

- Bit 5 (TC2ES): TC2 signal edge
  - **0:** Incremented if a transition from low to high (rising edge) takes place on the TC2 pin
  - 1: Incremented if a transition from high to low (falling edge) takes place on the TC2 pin
- Bit 4 (TC2M): Timer/Counter 2 mode select
  - 0: Timer/counter mode
  - 1: Window mode
- Bit 3 (TC2S): Timer/Counter 2 start control

0: Stop and counter cleared

1: Start

#### Bit 2~Bit 0 (TC2CK2~TC2CK0): Timer/Counter 2 clock source select

| TC2CK2 TC2CK1 |        | терско | Clock Source             | Resolution | Max. Time |
|---------------|--------|--------|--------------------------|------------|-----------|
| 1020N2        | ICZCKI | ICZCRU | Normal                   | Fc=8M      | Fc=8M     |
| 0             | 0      | 0      | Fc/2 <sup>23</sup>       | 1.05 sec   | 19.1 hr   |
| 0             | 0      | 1      | Fc/2 <sup>13</sup>       | 1.02 ms    | 1.1 min   |
| 0             | 1      | 0      | Fc/2 <sup>8</sup>        | 32µs       | 2.1 sec   |
| 0             | 1      | 1      | Fc/2 <sup>3</sup>        | 1µs        | 65.5 ms   |
| 1             | 0      | 0      | Fc                       | 125ns      | 7.9 ms    |
| 1             | 0      | 1      | -                        | _          | _         |
| 1             | 1      | 0      | _                        | -          | -         |
| 1             | 1      | 1      | External clock (TC2 pin) | _          | _         |







In Timer mode, counting up is performed using internal clock. When the contents of the up-counter are matched by TCR2 (TCR2H+TCR2L), then interrupt is generated and the counter is cleared. Counting up resumes after the counter is cleared.



Figure 6-5 Timer Mode Timing Diagram

In Counter mode, counting up is performed using the external clock input pin (TC2 pin) and either rising or falling can be selected by setting TC2ES. When the contents of up-counter are matched by TCR2 (TCR2H+TCR2L), then interrupt is generated and counter is cleared. Counting up resumes after the counter is cleared.



Figure 6-6 Counter Mode Timing Diagram

In Window mode, counting up is performed on a rising edge of the pulse that is logical AND of an internal clock and the TC2 pin (window pulse). When the contents of the up-counter are matched by TCR2 (TCR2H+TCR2L), then interrupt is generated and the counter is cleared. The frequency (window pulse) must be slower than the selected internal clock.







Figure 6-7 Window Mode Timing Diagram

## 6.1.17 Bank 1 R9 TC2DH (Timer 2 High Byte Data Buffer)

| Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|--------|--------|--------|--------|--------|--------|-------|-------|
| TC2D15 | TC2D14 | TC2D13 | TC2D12 | TC2D11 | TC2D10 | TC2D9 | TC2D8 |

Bit 7 ~ Bit 0 (TC2D8 ~ TC2D15): High byte data buffer of 16-bit Timer/Counter 2.

## 6.1.18 Bank 1 RA TC2DL (Timer 2 Low Byte Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TC2D7 | TC2D6 | TC2D5 | TC2D4 | TC2D3 | TC2D2 | TC2D1 | TC2D0 |

Bit 7 ~ Bit 0 (TC2D7 ~ TC2D0): Low byte data buffer of 16-bit Timer/Counter 2.

# 6.1.19 Bank 1 RB ~RE

These are reserved registers.

## 6.1.20 Bank 1 RF (Interrupt Status Register)

| Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|--------|-------|-------|-------|-------|-------|-------|
| CMPIF2 | CMPIF1 | TCIF3 | TCIF2 | -     | -     | -     | -     |

**NOTE:** "1" means with interrupt request "0" means no interrupt occurs

Bits 7~6 (CMPIFx): Comparator interrupt flag. Set when a change occurs in the Comparator output. Reset by software.

- Bit 5 (TCIF3): 8-bit Timer/Counter 3 interrupt flag. Interrupt flag is cleared by software.
- Bit 4 (TCIF2): 16-bit Timer/Counter 2 interrupt flag. Interrupt flag is cleared by software.
- Bits 3~0: Not used, set to "0" at all time

Bank 1RF can be cleared by instruction but cannot be set. IOCE is the interrupt mask register.

> **NOTE** The result of reading Bank 1 RF is the "logic AND" of Bank 1 RF and IOCE.



# 6.1.21 Bank 2 R5 AISR (ADC Input Select Register)

The AISR register for ADC pins functions as analog input or digital I/O.

| Bit 7      | Bit 6               | Bit 5        | Bit 4        | Bit 3         | Bit 2      | Bit 1     | Bit 0 |
|------------|---------------------|--------------|--------------|---------------|------------|-----------|-------|
| ADE8       | ADE7                | ADE6         | ADE5         | ADE4          | ADE3       | ADE2      | ADE1  |
| Bit 7 (ADE | <b>E8):</b> AD co   | nverter ena  | ble bit of P | 57 pin        |            |           |       |
| · ·        | ,<br><b>0:</b> Disa | able ADC8,   | P57 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC8 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 6 (ADE | E7): AD co          | nverter ena  | ble bit of P | '56 pin.      |            |           |       |
|            | <b>0:</b> Disa      | able ADC7,   | P56 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC7 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 5 (ADE | E6): AD co          | nverter ena  | ble bit of P | 77 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC6,   | P77 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC6 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 4 (ADE | E5): AD co          | nverter ena  | ble bit of P | 73 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC5,   | P73 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC5 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 3 (ADE | E4): AD co          | nverter ena  | ble bit of P | 63 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC4,   | P63 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC4 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 2 (ADE | <b>E3):</b> AD co   | nverter ena  | ble bit of P | 62 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC3,   | P62 functi   | ons as I/O    | pin        |           |       |
|            | 1: Ena              | ble ADC3 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 1 (ADE | E2): AD co          | nverter ena  | ble bit of P | 61 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC2,   | P61 functi   | ons as I/O    | pin        |           |       |
|            | <b>1:</b> Ena       | ble ADC2 t   | o function   | as analog i   | nput pin   |           |       |
| Bit 0 (ADE | E1): AD co          | nverter ena  | ble bit of P | 60 pin        |            |           |       |
|            | <b>0:</b> Disa      | able ADC1,   | P60 functi   | ons as I/O    | pin        |           |       |
|            | <b>1:</b> Ena       | ble ADC1 t   | o function   | as analog i   | nput pin   |           |       |
|            | The fo              | llowing tabl | e shows th   | e priority of | f P60/AD1/ | /INT/CMP3 | BOUT. |

| P60/AD1//INT/CMP3OUT Pin Priority |                      |  |  |  |  |  |  |  |  |
|-----------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Hight Medium Medium Low           |                      |  |  |  |  |  |  |  |  |
| /INT                              | /INT CMP3OUT AD1 P60 |  |  |  |  |  |  |  |  |



# 6.1.22 Bank 2 R6 ADCON (A/D Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VREFS | CKR1  | CKR0  | ADRUN | ADPD  | ADIS2 | ADIS1 | ADIS0 |

Bit 7 (VREFS): The input source of the Vref of the ADC.

**0:** Vref of the ADC is connected to Vdd (default value), and the P50/VREF pin carries out the function of P50

1: Vref of the ADC is connected to P50/VREF

#### Bit 6 ~ Bit 5 (CKR1 ~ CKR0): The oscillator clock rate of ADC

| CKR1/CKR0 | <b>Operation Mode</b> | Max. Operation Frequency |
|-----------|-----------------------|--------------------------|
| 00        | Fosc/4                | 4 MHz                    |
| 01        | Fosc                  | 1 MHz                    |
| 10        | Fosc/16               | 16 MHz                   |
| 11        | F <sub>osc</sub> /2   | 2 MHz                    |

Bit 4 (ADRUN): ADC starts to run

- **0:** Reset upon completion of AD conversion. This bit cannot be reset by software.
- 1: A/D conversion is started. This bit can be set by software
- Bit 3 (ADPD): ADC Power-down mode
  - **0:** Switch off the resistor reference to save power even while the CPU is operating
  - 1: ADC is operating

Bits 2~0 (ADIS2~ADIS0): AD Input Select Bits

| ADIS2 | ADIS1 | ADIS0 | AD Input Pin |
|-------|-------|-------|--------------|
| 0     | 0     | 0     | AD1          |
| 0     | 0     | 1     | AD2          |
| 0     | 1     | 0     | AD3          |
| 0     | 1     | 1     | AD4          |
| 1     | 0     | 0     | AD5          |
| 1     | 0     | 1     | AD6          |
| 1     | 1     | 0     | AD7          |
| 1     | 1     | 1     | AD8          |



# 6.1.23 Bank 2 R7 ADOC (A/D Offset Calibration Register)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 |
|-------|-------|--------|--------|--------|-------|--------|-------|
| CALI  | SIGN  | VOF[2] | VOF[1] | VOF[0] | -     | OPADEN | OPADS |

Bit 7 (CALI): Calibration enable bit for A/D offset

0: Calibration disable

1: Calibration enable

Bit 6 (SIGN): Polarity bit of offset voltage

0: Negative voltage

1: Positive voltage

#### Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

| VOF[2] | VOF[1] | VOF[0] | Offset |
|--------|--------|--------|--------|
| 0      | 0      | 0      | 0LSB   |
| 0      | 0      | 1      | 1LSB   |
| 0      | 1      | 0      | 2LSB   |
| 0      | 1      | 1      | 3LSB   |
| 1      | 0      | 0      | 4LSB   |
| 1      | 0      | 1      | 5LSB   |
| 1      | 1      | 0      | 6LSB   |
| 1      | 1      | 1      | 7LSB   |

Bit 2:

Not used, set to "0" at all time

Bit 1 (OPADEN): OPOUT connects to ADC Enable bit

**0:** ADC is not dedicated to OP output.

1: ADC is dedicated to OP output.

| OPADEN | ADIS2 | ADIS1 | ADIS0 | AD Input Select |
|--------|-------|-------|-------|-----------------|
| 1      | ×     | ×     | ×     | OPx output      |
| 0      | ×     | ×     | ×     | ADx             |

Bit 0 (OPADS): OPOUT connects to ADC select

**0:** OP1 output connects to AD.

1: OP2 output connects to AD.

## 6.1.24 Bank 2 R8 ADDH (AD High 8-Bit Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADD9  | ADD8  | ADD7  | ADD6  | ADD5  | ADD4  | ADD3  | ADD2  |

When the A/D conversion is completed, the result of high 8-bit is loaded into the ADDH. The ADRUN bit is cleared, and the ADIF is set. R8 is read only.



# 6.1.25 Bank 2 R9 ADDL (AD Low 2-Bit Data Buffer)

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|------|------|------|------|------|------|------|------|
| -    | -    | -    | -    | -    | -    | ADD1 | ADD0 |

Bits 7 ~ 2: Not used, set to "0" at all time

## 6.1.26 Bank 2 RA, RC ~RE

**Reserved registers** 

## 6.1.27 Bank 2 RB CMP3CON (Comparator 3 Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|--------|-------|-------|
| -     | -     | -     | -     | -     | CP3OUT | CP3S1 | CP3S0 |

Bits 7 ~ 3: Not used. Set to "0" at all time.

#### Bit 2 (CP3OUT): The result of the Comparator 3 output

|          | NC            | DTE            |                  |
|----------|---------------|----------------|------------------|
| The P60/ | AD1/INT/CMP30 | UT pin priorit | y is as follows. |
|          | Pric          | ority          |                  |
| High     | Medium        | Medium         | Low              |
| INT      | CMP3OUT       | AD1            | P60              |
|          |               |                | •                |

#### Bit 1 ~ Bit 0 (CP3S1 ~ CP3S0): Comparator 3 Select bits

| CO3S1 | CO3S0 | Function Description                                       |  |  |  |  |
|-------|-------|------------------------------------------------------------|--|--|--|--|
| 0     | 0     | Comparator 3 is not used. P60 functions as normal I/O pin. |  |  |  |  |
| 0     | 1     | Used as Comparator 3 and P60 functions as normal I/O pin   |  |  |  |  |
| 1     | 0     | Used as Comparator 3 and P60 funcions as                   |  |  |  |  |
|       |       | Comparator 3 output pin (CMP3OUT)                          |  |  |  |  |
| 1     | 1     | Reserved                                                   |  |  |  |  |

| NOTE                                          |        |     |  |  |
|-----------------------------------------------|--------|-----|--|--|
| The P61/AD2/CMP3+ pin priority is as follows: |        |     |  |  |
| Priority                                      |        |     |  |  |
| High                                          | Medium | Low |  |  |
| CMP3+                                         | AD2    | P61 |  |  |

| The P62/AD3/( | NOTE   | ty is as follows: |
|---------------|--------|-------------------|
| Priority      |        |                   |
| High          | Medium | Low               |
| CMP3-         | AD3    | P62               |
|               | •      | •                 |



# 6.1.28 Bank 2 RF (Pull-high Control Register 1)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | /PH73 | /PH72 | /PH71 | /PH70 |

Bits 7 ~ 4: Not used, set to "0" at all time.

Bit 3 (/PH73): Control bit used to enable pull-high of the P73 pin

0: Enable internal pull-high

1: Disable internal pull-high

Bit 2 (/PH72): Control bit used to enable pull-high of the P72 pin.

Bit 1 (/PH71): Control bit used to enable pull-high of the P71 pin.

Bit 0 (/PH70): Control bit used to enable pull-high the P70 pin.

The RF Register is both readable and writable.

#### 6.1.29 Bank 3 R5

Reserved Register

#### 6.1.30 Bank 3 R6 TBPTH (High Byte of Table Pointer Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1  | Bit 0  |
|-------|-------|-------|-------|-------|---------|--------|--------|
| MLB   | -     | -     | -     | -     | RBit 10 | RBit 9 | RBit 8 |

Bit 7 (MLB): Take MSB or LSB at machine code

Bits 6 ~ 3: Not used. Set "0" at all time.

Bits 2 ~ 0: Table pointer address Bits 10~8

## 6.1.31 Bank 3 R7 CMPCON (Comparator Control Register)

| Bit 7  | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|-------|--------|-------|-------|-------|-------|
| CP1OUT | CO1S1 | CO1S0 | CP2OUT | CO2S1 | CO2S0 | -     | -     |

Bit 7 (CP1OUT): The result of the comparator1 output

#### Bit 6 ~ Bit 5 (CO1S1 ~ CO1S0): Comparator 1 / OP1 Select bits

| 0 | CO1S1 | CO1S0 | Function Description                                                   |  |  |
|---|-------|-------|------------------------------------------------------------------------|--|--|
|   | 0     | 0     | Comparator 1 and OP1 are not used. P70 functions as normal I/O pin.    |  |  |
|   | 0     | 1     | Used as Comparator 1. P70 functions as normal I/O pin                  |  |  |
|   | 1     | 0     | Used as Comparator 1. P70 funcions as Comparator 1 output pin (OP1OUT) |  |  |
|   | 1     | 1     | Used as OP1. P70 functions as OP1 output pin (OP1OUT)                  |  |  |

Bit 4 (CP2OUT): The result of the Comparator 2 output



| Bit 3 ~ Bit 2 ( | CO2S1 | ~ CO2S( | ): Comparator 2 / OP2 Sele | ct bits |
|-----------------|-------|---------|----------------------------|---------|
|                 |       |         |                            |         |

| CO2S1 | CO2S0 | Function Description                                                         |  |  |
|-------|-------|------------------------------------------------------------------------------|--|--|
| 0     | 0     | Comparator 2 and OP2 are not used. P51 functions as normal I/O pin.          |  |  |
| 0     | 1     | Used as Comparator 2 and P51 functions as normal I/O pin.                    |  |  |
| 1     | 0     | Used as Comparator 2 and P51 funcions as<br>Comparator 2 output pin (OP2OUT) |  |  |
| 1     | 1     | Used as OP2 and P51 functions as OP2 output pin (OP2OUT)                     |  |  |

Bits 1 ~ 0: No used. Set "0" at all time.

## 6.1.32 Bank 3 R8~RC

**Reserved Registers** 

# 6.1.33 Bank 3 RD TC3CR (Timer 3 Control)

| Bit 7  | Bit 6  | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|--------|--------|-------|--------|--------|--------|-------|-------|
| TC3FF1 | TC3FF0 | TC3S  | TC3CK2 | TC3CK1 | TC3CK0 | TC3M1 | TC3M0 |

#### Bit 7 ~ Bit 6 (TC3FF1 ~ TC3FF0): Timer/Counter 3 flip-flop control

| TC3FF1 | TC3FF0 | Operating Mode |  |  |
|--------|--------|----------------|--|--|
| 0      | 0      | Clear          |  |  |
| 0      | 1      | Toggle         |  |  |
| 1      | 0      | Set            |  |  |
| 1      | 1      | Reserved       |  |  |

Bit 5 (TC3S): Timer/Counter 3 start control

0: Stop and clear the counter

1: Start

Bit 4 ~ Bit 2 (TC3CK2 ~ TC3CK0): Timer/Counter 3 clock source select

| TOOCKO | TOOCKA | TOOCKO | Clock Source             | Resolution | Max. Time |
|--------|--------|--------|--------------------------|------------|-----------|
| IC3CK2 | ICSCKI | 103010 | Normal                   | Fc=8M      | Fc=8M     |
| 0      | 0      | 0      | Fc/2 <sup>11</sup>       | 250 µs     | 64 ms     |
| 0      | 0      | 1      | Fc/2 <sup>7</sup>        | 16 µs      | 4 ms      |
| 0      | 1      | 0      | Fc/2 <sup>5</sup>        | 4 µs       | 1 ms      |
| 0      | 1      | 1      | Fc/2 <sup>3</sup>        | 1 µs       | 255 µs    |
| 1      | 0      | 0      | Fc/2 <sup>2</sup>        | 500 ns     | 127.5 µs  |
| 1      | 0      | 1      | Fc/2 <sup>1</sup>        | 250 ns     | 63.8 µs   |
| 1      | 1      | 0      | Fc                       | 125 ns     | 31.9 µs   |
| 1      | 1      | 1      | External clock (TC3 pin) | -          | -         |



#### Bit 1 ~ Bit 0 (TC3M1 ~ TC3M0): Timer/Counter 3 operating mode select

| TC3M1 | TC3M0 | Operating Mode                |  |  |
|-------|-------|-------------------------------|--|--|
| 0     | 0     | Timer/Counter                 |  |  |
| 0     | 1     | Reserved                      |  |  |
| 1     | 0     | Programmable Divider output   |  |  |
| 1     | 1     | Pulse Width Modulation output |  |  |



Figure 6-8 Timer / Counter 3 Configuration

**In Timer mode,** counting up is performed using internal clock (rising edge trigger). When the contents of the up-counter match with TCR3, the interrupt are then generated and the counter is cleared. Counting up resumes after the counter is cleared.

**In Counter mode,** counting up is performed using external clock input pin (TC3 pin). When the contents of the up-counter match with TCR3, the interrupt are then generated and the counter is cleared. Counting up resumes after the counter is cleared.

**In Programmable Divider Output (PDO) mode,** counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. The F/F can be initialized by the program and it is initialized to "0" during reset. A TC3 interrupt is generated each time the /PDO output is toggled.







**In Pulse Width Modulation (PWM) Output mode,** counting up is performed using internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F is toggled when a match is found. Then the counter continues counting, and the F/F is toggled again when the counter overflows, after which the counter is cleared. The F/F output is inverted and output to /PWM pin. A TC3 interrupt is generated each time an overflow occurs. TCR3 is configured as a 2-stage shift register and, during output; will not switch until one output cycle is completed even if TCR3 is overwritten. Therefore, the output can be changed continuously. Also, the TRC3 is shifted for the first time by setting TC3S to "1" after data is loaded to TCR3.



Figure 6-10 PWM Mode Timing Chart

# 6.1.34 Bank 3 RE TC3D (Timer 3 Data Buffer)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TC3D7 | TC3D6 | TC3D5 | TC3D4 | TC3D3 | TC3D2 | TC3D1 | TC3D0 |

Bit 7 ~ Bit 0 (TC3D7 ~ TC3D0): Data Buffer of 8-bit Timer/Counter 3

## 6.1.35 Bank 3 RF (Pull-down Control Register 1)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | -     | -     | -     | /PD73 | /PD72 | /PD71 | /PD70 |

Bit 7~ Bit 4: Not used, set to "0" at all time

Bit 3 (/PD73): Control bit used to enable the P73 pull-down pin

0: Enable internal pull-down

1: Disable internal pull-down

Bit 2 (/PD72): Control bit used to enable the P72 pull-down pin

Bit 1 (/PD71): Control bit used to enable the P71 pull-down pin

Bit 0 (/PD70): Control bit used to enable the P70 pull-down pin

The RF Register is both readable and writable.



# 6.2 Special Function Registers

# 6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator, which is not an addressable register.

# 6.2.2 CONT (Control Register)

|              | -              | -                                                      | -            |             |              |            |        |  |  |  |  |
|--------------|----------------|--------------------------------------------------------|--------------|-------------|--------------|------------|--------|--|--|--|--|
| Bit 7        | Bit 6          | Bit 5                                                  | Bit 4        | Bit 3       | Bit 2        | Bit 1      | Bit 0  |  |  |  |  |
| INTE         | /INT           | TS                                                     | TE           | PSTE        | PST2         | PST1       | PST0   |  |  |  |  |
| Bit 7 (INTE  | :): INT sig    | nal edge                                               |              |             |              |            |        |  |  |  |  |
|              | 0: Inter       | rupt occurs                                            | at the risin | ng edge of  | the INT pir  | า          |        |  |  |  |  |
|              | 1: Inter       | I: Interrupt occurs at the falling edge of the INT pin |              |             |              |            |        |  |  |  |  |
| Bit 6 (/INT) | : Interrup     | nterrupt enable flag                                   |              |             |              |            |        |  |  |  |  |
|              | 0: Masl        | ked by DISI                                            | or hardwa    | re interrup | ot           |            |        |  |  |  |  |
|              | 1: Enat        | oled by ENI/                                           | RETI instr   | uctions     |              |            |        |  |  |  |  |
| Bit 5 (TS):  | TCC sig        | gnal source                                            |              |             |              |            |        |  |  |  |  |
|              | 0: Inter       | nal instructi                                          | on cycle cl  | ock         |              |            |        |  |  |  |  |
|              | 1: Tran        | sition on TC                                           | C pin        |             |              |            |        |  |  |  |  |
| Bit 4 (TE):  | TCC sig        | gnal edge                                              |              |             |              |            |        |  |  |  |  |
|              | 0: Incre       | ement if a tra                                         | ansition fro | om low to h | nigh takes p | place on T | CC pin |  |  |  |  |
|              | 1: Incre       | ement if a tra                                         | ansition fro | om high to  | low takes p  | place on T | CC pin |  |  |  |  |
| Bit 3 (PSTI  | E): Prescal    | ler enable b                                           | it for TCC   |             |              |            |        |  |  |  |  |
|              | <b>0:</b> Pres | caler disabl                                           | e bit, TCC   | rate is 1:1 | I            |            |        |  |  |  |  |
|              | 1: Pres        | caler enable                                           | e bit, TCC   | rate is set | as Bit 2~B   | it O       |        |  |  |  |  |
| Bit 2 ~ Bit  | 0 (PST 2 ~     | • <b>PST0):</b> TC                                     | C prescale   | er bits     |              |            |        |  |  |  |  |
|              | PST2           | PST1                                                   | PST0         | 1           | CC Rate      |            |        |  |  |  |  |
|              | 0              | 0                                                      | 0            |             | 1:2          |            |        |  |  |  |  |
|              | 0              | 0                                                      | 1            |             | 1:4          |            |        |  |  |  |  |
|              | 0              | 1                                                      | 0            |             | 1:8          |            |        |  |  |  |  |
|              | 0              | 1                                                      | 1            |             | 1:16         |            |        |  |  |  |  |

0

0

1

1

1

1

1

1

CONT register is both readable and writable.

0

1

0

1

1:32

1:64

1:128

1:256

Product Specification (V2.4) 11.22.2012

(This specification is subject to change without further notice)



# 6.2.3 IOC5 ~ IOC8 (I/O Port Control Register)

A value of "1" sets the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.

IOC5, IOC6, IOC7, and IOC8 registers are both readable and writable.

# 6.2.4 IOC9

Reserved registers

## 6.2.5 IOCA (WDT Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WDTE  | EIS   | -     | -     | PSWE  | PSW2  | PSW1  | PSW0  |

Bit 7 (WDTE): Control bit used to enable the Watchdog timer

0: Disable WDT

1: Enable WDT

WDTE is both readable and writable.

Bit 6 (EIS): Control bit used to define the function of P60 (/INT) pin

0: P60, bidirectional I/O pin

1: /INT, external interrupt pin. In this case, the I/O control bit of P60 (Bit 0 of IOC6) must be set to "1".

When EIS is "**0**", the path of /INT is masked. When EIS is "**1**", the status of /INT pin can also be read by reading Port 6 (R6).

EIS is both readable and writable.

Bits 5~4: Not used, set to "0" at all time

Bit 3 (PSWE): Prescaler enable bit for WDT

0: Prescaler disable bit, WDT rate is 1:1.

1: Prescaler enable bit, WDT rate is set as Bit 0~Bit 2.

#### Bit 2 ~ Bit 0 (PSW2 ~ PSW0): WDT prescaler bits

| PSW2 | PSW1 | PSW0 | WDT Rate |
|------|------|------|----------|
| 0    | 0    | 0    | 1:2      |
| 0    | 0    | 1    | 1:4      |
| 0    | 1    | 0    | 1:8      |
| 0    | 1    | 1    | 1:16     |
| 1    | 0    | 0    | 1:32     |
| 1    | 0    | 1    | 1:64     |
| 1    | 1    | 0    | 1:128    |
| 1    | 1    | 1    | 1:256    |



## 6.2.6 IOCB (Pull-down Control Register 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| /PD7  | /PD6  | /PD5  | /PD4  | /PD3  | /PD2  | /PD1  | /PD0  |

Bit 7 (/PD7): Control bit used to enable pull-down of the of P63 pin

0: Enable internal pull-down

1: Disable internal pull-down

Bit 6 (/PD6): Control bit used to enable pull-down of the P62 pin

Bit 5 (/PD5): Control bit used to enable pull-down of the P61 pin

Bit 4 (/PD4): Control bit used to enable pull-down of the P60 pin

Bit 3 (/PD3): Control bit used to enable pull-down of the P53 pin

Bit 2 (/PD2): Control bit used to enable pull-down of the P52 pin

Bit 1 (/PD1): Control bit used to enable pull-down of the P51 pin

Bit 0 (/PD0): Control bit used to enable pull-down of the P50 pin

The IOCB Register is both readable and writable.

6.2.7 IOCC (Open-drain Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     | _     | _     | _     | OD3   | OD2   | OD1   | OD0   |

Bits 7 ~ 4: Not used, set to "0" at all time

Bit 3 (OD3): Control bit used to enable the open-drain output of P63 pin

0: Disable open-drain output

1: Enable open-drain output

Bit 2 (OD2): Control bit used to enable the open-drain output of P62 pin

Bit 1 (OD1): Control bit used to enable the open-drain output of P61 pin

Bit 0 (OD0): Control bit used to enable the open-drain output of P60 pin

The IOCC Register is both readable and writable.

#### 6.2.8 IOCD (Pull-high Control Register 2)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _     |       | -     | -     | /PH3  | /PH2  | /PH1  | /PH0  |

Bits 7~4: Not used, set to "0" at all time

Bit 3 (/PH3): Control bit used to enable pull-high of the P63 pin.

0: Enable internal pull-high

1: Disable internal pull-high



- **Bit 2 (/PH2):** Control bit used to enable pull-high of the P62 pin.
- Bit 1 (/PH1): Control bit used to enable pull-high of the P61 pin.
- Bit 0 (/PH0): Control bit used to enable pull-high of the P60 pin.

The IOCD Register is both readable and writable.

## 6.2.9 IOCE (Interrupt Mask Register 2)

| Bit 7  | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|--------|-------|-------|-------|-------|-------|-------|
| CMPIE2 | CMPIE1 | TCIE3 | TCIE2 | -     | _     | _     | _     |

#### Bits 7~6 (CMPIEx): Interrupt enable bit

**0:** Disable CMPIFx interrupt

1: Enable CMPIFx interrupt

When the Comparator Output Status Changed is used to enter an interrupt vector or enter the next instruction, the CMPIEx bit must be set to "Enable".

Bit 5 (TCIE3): Interrupt enable bit

0: Disable TCIF3 interrupt

- 1: Enable TCIF3 interrupt
- Bit 4 (TCIE2): Interrupt enable bit 0: Disable TCIF2 interrupt
  - 1: Enable TCIF2 interrupt
- Bits 3 ~ 0: Not used, set to "0" at all time

## 6.2.10 IOCF (Interrupt Mask Register 1)

| Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| CMPIE3 | ADIE  | _     | _     | _     | EXIE  | ICIE  | TCIE  |

#### Bit 7 (CMPIE3): Interrupt enable bit

0: Disable CMPIF3 interrupt

1: Enable CMPIF3 interrupt

- Bit 6 (ADIE): ADIF interrupt enable bit
  - 0: Disable ADIF interrupt
    - 1: Enable ADIF interrupt

When the ADC Complete is used to enter an interrupt vector or the next instruction, the ADIE bit must be set to "Enable".

Bits 5 ~ 3: Not used, set to "0" at all time



| Bit 2 (EXIE): | EXIF interrupt enable bit |
|---------------|---------------------------|
|               | 0: Disable EXIF interrupt |
|               | 1: Enable EXIF interrupt  |
| Bit 1 (ICIE): | ICIF interrupt enable bit |
|               | 0: Disable ICIF interrupt |
|               | 1: Enable ICIF interrupt  |
| Bit 0 (TCIE): | TCIF interrupt enable bit |
|               | 0: Disable TCIF interrupt |
|               | 1: Enable TCIF interrupt  |

Individual interrupt is enabled by setting its associated control bit in the IOCF to "1". Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. The IOCF register is both readable and writable.

# 6.3 TCC/WDT and Prescaler

There are two 8-bit counters available as prescalers for the TCC and WDT respectively. The PST0~PST2 bits of the CONT register are used to determine the ratio of the TCC prescaler. Likewise, the PSW0~PSW2 bits of the IOCA register are used to determine the WDT prescaler. The prescaler counter will be cleared by the instructions each time they are written into TCC. The WDT and prescaler are cleared by the "WDTC" and "SLEP" instructions. Figure 6-11 below depicts the circuit diagram of TCC/WDT.

R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be internal clock or external signal input (edge selectable from the TCC pin). If TCC signal source is from the internal clock, TCC will be incremented by 1 at Fc clock (without prescaler). As illustrated in Figure 6-11, selection of Fc depends on the Bank 0 RE.6 <TIMERSC>. If TCC signal source is from external clock input, TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin. TCC pin input time length (kept in High or Low level) must be greater than 1CLK. The TCC will stop running when Sleep mode occurs.

The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even after the oscillator driver has been turned off (i.e., in Sleep mode). During normal operation or Sleep mode, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled any time during normal mode by software programming. Refer to WDTE bit of IOCA register. With no prescaler, the WDT time-out period is approximately 18ms<sup>1</sup> (one oscillator start-up timer period).

<sup>&</sup>lt;sup>1</sup> VDD=5V, WDT time-out period =  $16.5ms \pm 5\%$ VDD=3V, WDT time-out period =  $18ms \pm 5\%$ .




Figure 6-11 TCC and WDT Block Diagram

# 6.4 I/O Ports

The I/O registers, Ports 5, 6, 7 and 8, are bidirectional tri-state I/O ports. Port 6 / 7 can be pulled high internally by software. In addition, Port 6 can also be set as open-drain output by software. Input status change interrupt (or Wake-up) function on Port 6 P50 ~ P53 and P60 ~ P63 and Port 7 pins can be pulled down by software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC8).

The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for Port 5, Port 6, Port 7 and Port 8 are shown in the following circuit diagrams (Figures 6-12, 6-13 (a), 6-13 (b), and Figure 6-14) below.



NOTE: Pull-down not shown in the figure.





NOTE: Pull-high (down) and Open-drain are not shown in the figure.





NOTE: Pull-high (down) and Open-drain are not shown in the figure.







Figure 6-14 I/O Port 6 with Input Change Interrupt/Wake-up Block Diagram

| 6.4.1 | Usage of Port 6 | Input Change | Wake-up/Interrupt | Function |
|-------|-----------------|--------------|-------------------|----------|
|-------|-----------------|--------------|-------------------|----------|

| 1. Wake-up Input Status Change                                                                                                                                           | 2. Interrupt Input Status Change                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| a) Before Sleep:                                                                                                                                                         | 1) Read I/O Port 6 (MOV R6,R6)                               |
| 1) Disable WDT <sup>2</sup> (use this very carefully)                                                                                                                    | 2) Execute "ENI"                                             |
| 2) Read I/O Port 6 (MOV R6,R6)                                                                                                                                           | 3) Enable interrupt (Set IOCF=1)                             |
| <ul> <li>3a) Enable interrupt (Set IOCF=1) after wake-up.</li> <li>If "ENI," switched to interrupt vector (006H).</li> <li>If "DISI" excute next instruction.</li> </ul> | 4) IF Port 6 change (interrupt) →<br>Interrupt vector (006H) |
| 3b) Disable interrupt (Set IOCF=1).<br>Always execute next instruction                                                                                                   |                                                              |
| 4) Enable wake-up bit (Set RA=6)                                                                                                                                         |                                                              |
| 5) Execute "SLEP" instruction                                                                                                                                            |                                                              |
| b) After Wake-up:                                                                                                                                                        |                                                              |
| 1) IF "ENI" $\rightarrow$ Interrupt vector (006H)                                                                                                                        |                                                              |
| 2) IF "DISI" $\rightarrow$ Next instruction                                                                                                                              |                                                              |

<sup>&</sup>lt;sup>2</sup> Software disables WDT (watchdog timer) but hardware must be enabled before applying Port 6 Change Wake-up function (Code Option Register Word 0 Bit 6 (ENWDTB) is set to "1").



# 6.5 Reset and Wake-up

## 6.5.1 Reset

A reset is initiated by one of the following events:

- 1) Power-on reset
- 2) /RESET pin input "low"
- 3) WDT time-out (if enabled)

The device is kept in a reset condition for a period of approximately 18ms<sup>3</sup> (one oscillator start-up timer period) after the reset is detected. Once a reset occurs, the following functions are performed. Refer to Figure 6-15 below.

- The oscillator is running, or will be started.
- The Program Counter (R2) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The Watchdog timer and prescaler are cleared.
- When power is switched on, the upper three bits of R3 are cleared.
- The bits of the RB, RC, RD, RD, RE registers are set to their previous status.
- The bits of the CONT register are set to all "0" except for Bit 6 (INT flag).
- Bank 0 RF, IOCF registers are cleared.

The Sleep (power down) mode is asserted by executing the "SLEP" instruction. While entering Sleep mode, the WDT (if enabled) is cleared but keeps on running. Wake-up is then generated. In RC mode, the wake-up time is 34 clocks, in High Crystal mode wake-up time is 2ms and 32 clocks, and in Low Crystal 2 mode, wake-up time is 500ms.

The controller can be awakened by:

- 1) External reset input on /RESET pin
- 2) WDT time-out (if enabled)
- 3) Port 6 input status changes (if enabled)
- 4) External (P60, /INT) pin changes (if EXWE is enabled)
- 5) A/D conversion completed (if ADWE is enabled)
- 6) Comparator output status change (if CMPxWE is enabled)

<sup>&</sup>lt;sup>3</sup> Vdd = 5V, set up time period =  $16.8ms \pm 8\%$ 

Vdd = 3V, set up time period =  $18ms \pm 8\%$ 



The first two events (1 & 2) will cause the A96F902N to reset. The T and P flags of R3 are used to determine the source of the reset (Wake-up). Events 3, 4, and 5 are considered the continuation of program execution and the global interrupt ("ENI" or "DISI" being executed) determines whether or not the controller branches to the interrupt vector following Wake-up. If ENI is executed before SLEP, the instruction will begin to execute from Address 0x3, 0x6 0xF, 0x15 or 0X30, after Wake-up. If DISI is executed before SLEP, the execution will restart from the instruction right next to SLEP after Wake-up. All throughout the Sleep mode, the Wake-up time is150µs, no matter what oscillation mode is (except low Crystal mode). In Low Crystal 2 mode, the Wake-up time is 500ms.

One or more of the above Events 3 to 6 may be enabled before entering into Sleep mode but is awakened only by one of the events.

- a) If WDT is enabled before SLEP, all of the RE bit is disabled. Hence, the A96F902N can be awakened only by Event 1 or 2. Refer to Section 6.6 *Interrupt* for further details.
- b) If Port 6 Input Status Change is used to wake up the A96F902N and the ICWE bit of the RA register is enabled before SLEP, WDT must be disabled. Hence, the A96F902N can be awakened only by Event 3. The following instructions must be executed before SLEP:

| MOV           | A, @001110xxb | ;Select WDT prescaler and disable WDT   |
|---------------|---------------|-----------------------------------------|
| IOW           | IOCA          |                                         |
| WDTC          |               | ;Clear WDT and prescaler                |
| MOV           | R6, R6        | ;Read Port 6                            |
| ENI (or DISI) |               | ;Enable (or disable) global interrupt   |
| MOV           | A, @010xxxxxb | ;Enable Port 6 input change Wake-up bit |
| MOV           | RA,A          |                                         |
| MOV           | A, @00000x1xb | ;Enable Port 6 input change interrupt   |
| IOW           | IOCF          |                                         |
| SLEP          |               | ;Sleep                                  |

- c) If External (P60, /INT) pin changes is used to wake-up the A96F902N and EXWE bit of the RA register is enabled before SLEP, WDT must be disabled by software. Hence, the A96F902N wakes up only by Event 4.
- d) If A/D conversion completed is used to wake-up A96F902N and ADWE bit of RA register is enabled before SLEP, the WDT must be disabled by software. Hence, the A96F902N wakes up only by Event 5.



e) If Comparator output status change is used to wake-up A96F902N and CMPWE bit of RA register is enabled before SLEP, WDT must be disabled by software. Hence, the A96F902N wakes up only by Event 6. The following instructions must be executed before SLEP:

| BS            | R4, 7         | ;Select Bank 3                                          |
|---------------|---------------|---------------------------------------------------------|
| BS            | R4, 6         |                                                         |
| MOV           | A, @x10xxxxb  | ;Select a comparator and P70 act as CO pin              |
| MOV           | R7,A          |                                                         |
| MOV           | A, @001110xxb | ;Select WDT prescaler and Disable WDT                   |
| IOW           | IOCA          |                                                         |
| WDTC          |               | ;Clear WDT and prescaler                                |
| ENI (or DISI) |               | ;Enable (or disable) global interrupt                   |
| MOV           | A, @100xxxxxb | ;Enable comparator output status change<br>;wake-up bit |
| MOV           | RA,A          |                                                         |
| MOV           | A, @10000000b | ;Enable comparator output status change<br>;interrupt   |
| IOW           | IOCE          |                                                         |
| SLEP          |               | ;Sleep                                                  |

## 6.5.2 Summary of Wake-up and Interrupt Modes Operation

All categories under Wake-up and Interrupt modes are summarized below.

| The controller can be awakened from Sleep mode and Idle mode. | The Wake-up |
|---------------------------------------------------------------|-------------|
| signals are listed as follows:                                |             |

| Wake-up Signal            | Sleep Mode                                                                                        | Idle Mode                                                                                            | Green Mode                                                    | Normal Mode                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| External interrupt        | If enable EXWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction   | If enable EXWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enablee)<br>+ next instruction      | Interrupt (if interrupt<br>is enabled)<br>or next instruction | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| Port 6 pin change         | If enable ICWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction   | If enable ICWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction      | Interrupt (if interrupt<br>is enabled)<br>or next instruction | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| TCC overflow<br>interrupt | x                                                                                                 | Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction                            | Interrupt (if interrupt<br>is enabled)<br>or next instruction | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| Comparator<br>interrupt   | If enable CMPxWE<br>bit Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction | If enable CMPxWE<br>bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction | Interrupt (if interrupt<br>is enabled)<br>or next instruction | Interrupt (if interrupt<br>is enabled)<br>or next instruction |





| (Co                                 | ntinuation)                                                                                                                |                                                                                                                            |                                                                                                        |                                                               |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Wake-up Signal                      | Sleep Mode                                                                                                                 | Idle Mode                                                                                                                  | Green Mode                                                                                             | Normal Mode                                                   |
| AD conversion<br>complete interrupt | If enable ADWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction<br>Fs and Fm don't<br>stop | If enable ADWE bit<br>Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction<br>Fs and Fm don't<br>stop | Interrupt (if interrupt<br>is enabled)<br>or next instruction<br><b>Fs and Fm don't</b><br><b>stop</b> | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| TC2 interrupt                       | x                                                                                                                          | Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction                                                  | Interrupt (if interrupt<br>is enabled)<br>or next instruction                                          | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| TC3 interrupt                       | x                                                                                                                          | Wake-up<br>+ interrupt (if<br>interrupt is enabled)<br>+ next instruction                                                  | Interrupt (if interrupt<br>is enabled)<br>or next instruction                                          | Interrupt (if interrupt<br>is enabled)<br>or next instruction |
| WDT Time out                        | RESET                                                                                                                      | RESET                                                                                                                      | RESET                                                                                                  | RESET                                                         |
| Low Voltage<br>Reset                | RESET                                                                                                                      | RESET                                                                                                                      | RESET                                                                                                  | RESET                                                         |

NOTE

After wake up:

1. If interrupt is enabled  $\rightarrow$  interrupt+ next instruction

2. If interrupt is disabled  $\rightarrow$  next instruction

# 6.5.3 Summary of Register Initial Values

Legend: x: Not used

U: Unknown or don't care

*P:* Previous value before reset*t:* Check tables under Section 6.5.4

| Addr  | Name | Reset Type              | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|------|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|       |      | Bit Name                | C57   | C56   | C55   | C54   | C53   | C52   | C51   | C50   |
| 0205  | 1005 | Power-on                | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0.005 | 1005 | /RESET and WDT          | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|       |      | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |      | Bit Name                | ×     | ×     | ×     | ×     | C63   | C62   | C61   | C60   |
| 0206  | 1006 | Power-on                | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0,00  | 1000 | /RESET and WDT          | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
|       |      | Wake-up from Pin Change | 0     | 0     | 0     | 0     | Р     | Р     | Р     | Р     |
|       |      | Bit Name                | C77   | ×     | ×     | ×     | C73   | C72   | C71   | C70   |
| 0×07  | 1007 | Power-on                | 1     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0,07  | 1007 | /RESET and WDT          | 1     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
|       |      | Wake-up from Pin Change | Р     | 0     | 0     | 0     | Р     | Р     | Р     | Р     |

## A96F902N 8-Bit Microcontroller



|       |          | (Continuation)          |       |       |       |       |       |       |       |       |
|-------|----------|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Addr  | Name     | Reset Type              | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|       |          | Bit Name                | ×     | ×     | ×     | ×     | C83   | ×     | ×     | ×     |
| 0,000 | 1000     | Power-on                | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
| 0000  | 1008     | /RESET and WDT          | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
|       |          | Wake-up from Pin Change | 0     | 0     | 0     | 0     | Р     | 0     | 0     | 0     |
|       |          | Bit Name                | INTE  | /INT  | TS    | TE    | PSTE  | PST2  | PST1  | PST0  |
| ΝΙ/Δ  | CONT     | Power-on                | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| IN/A  | CONT     | /RESET and WDT          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | IAR7  | IAR6  | IAR5  | IAR4  | IAR3  | IAR2  | IAR1  | IAR0  |
| 0,000 |          | Power-on                | U     | U     | U     | U     | U     | U     | U     | U     |
| 0x00  | KU (IAK) | /RESET and WDT          | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | TCC7  | TCC6  | TCC5  | TCC4  | TCC3  | TCC2  | TCC1  | TCC0  |
| 0×01  | R1       | Power-on                | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0.001 | (TCC)    | /RESET and WDT          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | A7    | A6    | A5    | A4    | A3    | A2    | A1    | A0    |
| 0,000 |          | Power-on                | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0x02  | K2 (FC)  | /RESET and WDT          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | ×     | ×     | ×     | Т     | Р     | Z     | DC    | С     |
| 0×03  | P3 (SP)  | Power-on                | 0     | 0     | 0     | 1     | 1     | U     | U     | U     |
| 0.005 | K3 (3K)  | /RESET and WDT          | 0     | 0     | 0     | t     | t     | Р     | Р     | Р     |
|       |          | Wake-up from Pin Change | 0     | 0     | 0     | t     | t     | Р     | Р     | Р     |
|       |          | Bit Name                | RSR7  | RSR6  | RSR5  | RSR4  | RSR3  | RSR2  | RSR1  | RSR0  |
| 0×04  | R4       | Power-on                | U     | U     | U     | U     | U     | U     | U     | U     |
| 0704  | (RSR)    | /RESET and WDT          | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | P57   | P56   | P55   | P54   | P53   | P52   | P51   | P50   |
| 0,05  | P5       | Power-on                | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 0x05  | (Bank 0) | /RESET and WDT          | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|       |          | Wake-up from Pin Change | Р     | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | х     | х     | х     | х     | P63   | P62   | P61   | P60   |
| 0.400 | P6       | Power-on                | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0,000 | (Bank 0) | /RESET and WDT          | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
|       |          | Wake-up from Pin Change | 0     | 0     | 0     | 0     | Р     | Р     | Р     | Р     |
|       |          | Bit Name                | P77   | х     | х     | х     | P73   | P72   | P71   | P70   |
| 0.07  | P7       | Power-on                | 1     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
| 0x07  | (Bank 0) | /RESET and WDT          | 1     | 0     | 0     | 0     | 1     | 1     | 1     | 1     |
|       |          | Wake-up from Pin Change | Р     | 0     | 0     | 0     | Р     | Р     | Р     | Р     |





|       |                | (Continuation)          |                |                |       |       |       |            |            |        |
|-------|----------------|-------------------------|----------------|----------------|-------|-------|-------|------------|------------|--------|
| Addr  | Name           | Reset Type              | Bit 7          | Bit 6          | Bit 5 | Bit 4 | Bit 3 | Bit 2      | Bit 1      | Bit 0  |
|       |                | Bit Name                | х              | х              | х     | х     | P83   | х          | х          | х      |
| 0,000 | P8             | Power-on                | 0              | 0              | 0     | 0     | 1     | 0          | 0          | 0      |
| 0000  | (Bank 0)       | /RESET and WDT          | 0              | 0              | 0     | 0     | 1     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | 0              | 0              | 0     | 0     | Р     | 0          | 0          | 0      |
|       |                | Bit Name                | RBit7          | RBit6          | RBit5 | RBit4 | RBit3 | RBit2      | RBit1      | RBit0  |
| 0200  | R9             | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
| 0709  | (Bank 0)       | /RESET and WDT          | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | Р              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |
|       |                | Bit Name                | CMP2<br>WE     | ICWE           | ADWE  | EXWE  | ×     | CMP1<br>WE | CMP3<br>WE | ×      |
| 0x0A  | RA<br>(Book 0) | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
|       | (Dalik U)      | /RESET and WDT          | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | Р              | Р              | Р     | Р     | 0     | Р          | 0          | 0      |
|       |                | Bit Name                | RD             | WR             | EEWE  | EEDF  | EEPC  | x          | х          | х      |
| OXOB  | (FCR)          | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
| UNUD  | (Bank 0)       | /RESET and WDT          | Р              | Р              | Р     | Р     | Р     | 0          | 0          | 0      |
|       | · /            | Wake-up from Pin Change | Р              | Р              | Р     | Р     | Р     | 0          | 0          | 0      |
|       |                | Bit Name                | ×              | EE_A6          | EE_A5 | EE_A4 | EE_A3 | EE_A2      | EE_A1      | EE_A0  |
| 0X0C  | RC             | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
| 0/100 | (Bank 0)       | /RESET and WDT          | 0              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |
|       |                | Wake-up from Pin Change | 0              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |
|       |                | Bit Name                | EE_D7          | EE_D6          | EE_D5 | EE_D4 | EE_D3 | EE_D2      | EE_D1      | EE_D0  |
|       | RD             | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
| UNUD  | (Bank 0)       | /RESET and WDT          | Р              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |
|       |                | Wake-up from Pin Change | Р              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |
|       |                | Bit Name                | ×              | TIMER<br>SC    | CPUS  | IDLE  | ×     | ×          | ×          | ×      |
| 0X0E  | RE<br>(Bank 0) | Power-on                | 0              | 1              | 1     | 1     | 0     | 0          | 0          | 0      |
|       | (Bank 0)       | /RESET and WDT          | 0              | 1              | 1     | 1     | 0     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | 0              | Р              | Р     | Р     | 0     | 0          | 0          | 0      |
|       |                | Bit Name                | CMPIF3         | ADIF           | ×     | ×     | ×     | EXIF       | ICIF       | TCIF   |
|       | RF (ISR)       | Power-on                | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
| 0,01  | (Bank 0)       | /RESET and WDT          | 0              | 0              | 0     | 0     | 0     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | 0              | 0              | 0     | 0     | 0     | Р          | Р          | Р      |
|       |                | Bit Name                | RCM1           | RCM0           | TC2ES | TC2M  | TC2S  | TC2CK2     | TC2CK1     | TC2CK0 |
| 0.28  | R8             | Power-on                | Option<br>RCM1 | Option<br>RCM0 | 0     | 0     | 0     | 0          | 0          | 0      |
| 0.00  | (Bank 1)       | /RESET and WDT          | Option<br>RCM1 | Option<br>RCM0 | 0     | 0     | 0     | 0          | 0          | 0      |
|       |                | Wake-up from Pin Change | Р              | Р              | Р     | Р     | Р     | Р          | Р          | Р      |

## A96F902N 8-Bit Microcontroller



|       |          | (Continuation)          |        |        |        |        |        |         |        |        |
|-------|----------|-------------------------|--------|--------|--------|--------|--------|---------|--------|--------|
| Addr  | Name     | Reset Type              | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2   | Bit 1  | Bit 0  |
|       |          | Bit Name                | TC2D15 | TC2D14 | TC2D13 | TC2D12 | TC2D11 | TC2D10  | TC2D9  | TC2D8  |
| 0×0   | R9       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 079   | (Bank 1) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | TC2D7  | TC2D6  | TC2D5  | TC2D4  | TC2D3  | TC2D2   | TC2D1  | TC2D0  |
| ΟΧΑ   | RA       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0/0/  | (Bank 1) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | CMPIF1 | CMPIF2 | TCIF3  | TCIF2  | ×      | ×       | ×      | ×      |
| OXE   | RF       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| UNI   | (Bank 1) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | 0      | 0       | 0      | 0      |
|       |          | Bit Name                | ADE8   | ADE7   | ADE6   | ADE5   | ADE4   | ADE3    | ADE2   | ADE1   |
| 0205  | R5       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0.005 | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | VREFS  | CKR1   | CKR0   | ADRUN  | ADPD   | ADIS2   | ADIS1  | ADIS0  |
| 0,000 | R6       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0,000 | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | CALI   | SIGN   | VOF[2] | VOF[1] | VOF[0] | ×       | OPADEN | OPADS  |
| 0.7   | R7       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0.27  | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | 0       | Р      | Р      |
|       |          | Bit Name                | ADD9   | ADD8   | ADD7   | ADD6   | ADD5   | ADD4    | ADD3   | ADD2   |
| 0.40  | R8       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| Uxo   | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | Р      | Р      | Р      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | ×      | ×      | ×      | ×      | ×      | ×       | ADD1   | ADD0   |
| 0.0   | R9       | Power-on                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0.000 | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | 0      | 0      | 0      | 0      | 0      | 0       | Р      | Р      |
|       |          | Bit Name                | ×      | ×      | ×      | ×      | /PH73  | /PH72   | /PH71  | /PH70  |
| a a=  | RF       | Power-On                | 0      | 0      | 0      | 0      | 1      | 1       | 1      | 1      |
| 0x0F  | (Bank 2) | /RESET and WDT          | 0      | 0      | 0      | 0      | 1      | 1       | 1      | 1      |
|       |          | Wake-up from Pin Change | 0      | 0      | 0      | 0      | Р      | Р       | Р      | Р      |
|       |          | Bit Name                | MLB    | ×      | X      | ×      | ×      | RBit 10 | RBit 9 | RBit 8 |
|       | R6       | Power-On                | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
| 0X06  | (Bank 3) | /RESET and WDT          | 0      | 0      | 0      | 0      | 0      | 0       | 0      | 0      |
|       |          | Wake-up from Pin Change | Р      | 0      | 0      | 0      | 0      | Р       | Р      | Р      |



| (Continuation) |
|----------------|
|----------------|

| Addr                   | Name                    | Reset Type              | Bit 7  | Bit 6  | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1 | Bit 0 |
|------------------------|-------------------------|-------------------------|--------|--------|-------|--------|--------|--------|-------|-------|
|                        |                         | Bit Name                | CP1OUT | CO1S1  | CO1S0 | CP2OUT | CO2S1  | CO2S0  | ×     | ×     |
| 0×07                   | R7                      | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| 0.01                   | (Bank 3)                | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        |                         | Wake-up from Pin Change | Р      | Р      | Р     | Р      | Р      | Р      | 0     | 0     |
|                        |                         | Bit Name                | TC3FF1 | TC3FF0 | TC3S  | ТСЗСК2 | ТСЗСК1 | тсзско | TC3M1 | ТСЗМ0 |
|                        | RD                      | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| UND                    | (Bank 3)                | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        |                         | Wake-up from Pin Change | Р      | Р      | Р     | Р      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | TC3D7  | TC3D6  | TC3D5 | TC3D4  | TC3D3  | TC3D2  | TC3D1 | TC3D0 |
| OVE                    | RE                      | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| UVE                    | (Bank 3)                | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        |                         | Wake-up from Pin Change | Р      | Р      | Р     | Р      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | ×      | ×      | ×     | ×      | /PD73  | /PD72  | /PD71 | /PD70 |
| OVE                    | RF                      | Power-on                | 0      | 0      | 0     | 0      | 1      | 1      | 1     | 1     |
| UAF                    | (Bank 3)                | /RESET and WDT          | 0      | 0      | 0     | 0      | 1      | 1      | 1     | 1     |
|                        |                         | Wake-up from Pin Change | 0      | 0      | 0     | 0      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | WDTE   | EIS    | ×     | ×      | PSWE   | PSW2   | PSW1  | PSW0  |
|                        |                         | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| 0x0A IC                | IOCA                    | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        | IXOA IOCA -             | Wake-up from Pin Change | Р      | Р      | 0     | 0      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | /PD7   | /PD6   | /PD5  | /PD4   | /PD3   | /PD2   | /PD1  | /PD0  |
| 0v0B                   | IOCB                    | Power-on                | 1      | 1      | 1     | 1      | 1      | 1      | 1     | 1     |
| UNUD                   | ICCD                    | /RESET and WDT          | 1      | 1      | 1     | 1      | 1      | 1      | 1     | 1     |
| 0x0A IOCA<br>0x0B IOCB | Wake-up from Pin Change | Р                       | Р      | Р      | Р     | Р      | Р      | Р      | Р     |       |
|                        |                         | Bit Name                | ×      | ×      | ×     | ×      | OD3    | OD2    | OD1   | OD0   |
| 0×00                   | 1000                    | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| 0,000                  | 1000                    | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        |                         | Wake-up from Pin Change | 0      | 0      | 0     | 0      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | ×      | ×      | ×     | ×      | /PH3   | /PH2   | /PH1  | /PH0  |
|                        |                         | Power-on                | 0      | 0      | 0     | 0      | 1      | 1      | 1     | 1     |
| UXUD                   | 1000                    | /RESET and WDT          | 0      | 0      | 0     | 0      | 1      | 1      | 1     | 1     |
|                        |                         | Wake-up from Pin Change | 0      | 0      | 0     | 0      | Р      | Р      | Р     | Р     |
|                        |                         | Bit Name                | CMPIE1 | CMPIE2 | TCIE3 | TCIE2  | ×      | ×      | ×     | ×     |
|                        |                         | Power-on                | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
| UNUE                   | IUCE                    | /RESET and WDT          | 0      | 0      | 0     | 0      | 0      | 0      | 0     | 0     |
|                        |                         | Wake-up from Pin Change | Р      | Р      | Р     | Р      | 0      | 0      | 0     | 0     |

...

. .

.. .



|       |      | (Continuation)          |        |       |       |       |       |       |       |       |
|-------|------|-------------------------|--------|-------|-------|-------|-------|-------|-------|-------|
| Addr  | Name | Reset Type              | Bit 7  | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|       |      | Bit Name                | CMPIE3 | ADIE  | ×     | ×     | ×     | EXIE  | ICIE  | TCIE  |
| 0x0F  | IOCF | Power-on                | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|       |      | /RESET and WDT          | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|       |      | Wake-up from Pin Change | Р      | Р     | 0     | 0     | 0     | Р     | Р     | Р     |
|       |      | Bit Name                | R7     | R6    | R5    | R4    | R3    | R2    | R1    | R0    |
| 0x10~ | R10~ | Power-on                | U      | U     | U     | U     | U     | U     | U     | U     |
| 0x2F  | R2F  | /RESET and WDT          | Р      | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       | -    | Wake-up from Pin Change | Р      | Р     | Р     | Р     | Р     | Р     | Р     | Р     |
|       |      |                         |        |       |       |       |       |       |       |       |

# 6.5.4 Status of RST, T, and P of the Status Register

A RESET condition is initiated by the following events:

- 1) Power-on condition
- 2) High-low-high pulse on /RESET pin
- 3) Watchdog timer time-out

The values of T and P, listed in Table 6-3 are used to check how the processor wakes up. Table 6-4 shows the events that may affect the status of T and P.

#### ■ Values of RST, T and P after Reset:

| Reset Type                              | Т  | Р  |
|-----------------------------------------|----|----|
| Power on                                | 1  | 1  |
| /RESET during Operating mode            | *P | *P |
| /RESET wake-up during Sleep mode        | 1  | 0  |
| WDT during Operating mode               | 0  | *P |
| WDT wake-up during Sleep mode           | 0  | 0  |
| Wake-up on pin change during Sleep mode | 1  | 0  |

\* P: Previous status before reset

#### Status of T and P Being Affected by Events

| Event                                   | Т | Р  |
|-----------------------------------------|---|----|
| Power on                                | 1 | 1  |
| WDTC instruction                        | 1 | 1  |
| WDT time-out                            | 0 | *P |
| SLEP instruction                        | 1 | 0  |
| Wake-up on pin change during Sleep mode | 1 | 0  |

\* P: Previous value before reset





Figure 6-15 Controller Reset Block Diagram

# 6.6 Interrupt

The A96F902N has 8 interrupts (4 external, 4 internal) as listed below:

| Interru                | ipt Source        | Enable Condition | Int. Flag | Int. Vector | Priority |
|------------------------|-------------------|------------------|-----------|-------------|----------|
| Internal /<br>External | Reset             | -                | -         | 0000        | High 0   |
| External               | INT               | ENI + EXIE=1     | EXIF      | 0003        | 1        |
| External               | Port 6 pin change | ENI +ICIE=1      | ICIF      | 0006        | 2        |
| Internal               | тсс               | ENI + TCIE=1     | TCIF      | 0009        | 3        |
| External               | Comparator 1      | ENI + CMPIE1=1   | CMPIF1    | 000F        | 4        |
| External               | Comparator 2      | ENI + CMPIE2=1   | CMPIF2    | 0015        | 5        |
| Internal               | TC2               | ENI + TCIE2=1    | TCIF2     | 0024        | 6        |
| Internal               | TC3               | ENI + TCIE3=1    | TCIF3     | 0027        | 7        |
| Internal               | AD                | ENI + ADIE=1     | ADIF      | 0030        | 8        |
| External               | Comparator3       | ENI + CMPIE3=1   | CMPIF3    | 0033        | 9        |

RF is the interrupt status register that records the interrupt requests in the relative flags/ bits. IOCF is the interrupt Mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. When one of the enabled interrupts occurs, the next instruction will be fetched from their individual address. The interrupt flag bit must be cleared by instructions before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts.

The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the status of its mask bit or the execution of ENI. The RETI instruction ends the interrupt routine and enables the global interrupt (the execution of ENI).



The external interrupt is equipped with an on-chip digital noise rejection circuit (input pulse less than **8 system clock time** is eliminated as noise). **However, in Low Crystal oscillator (LXT) mode, the noise rejection circuit will be disabled.** When an interrupt (Falling edge) is generated by the External interrupt (when enabled), the next instruction will be fetched from Address 003H.

Before the interrupt subroutine is executed, the contents of ACC and the R3 and R4 register are saved by hardware. If another interrupt occurred, the ACC, R3 and R4 will be replaced by the new interrupt. After the interrupt service routine is completed, the ACC, R3, and R4 are pushed back.



Figure 6-16 Interrupt Input Circuit



Figure 6-17 Interrupt Back-up Diagram

# 6.7 Data EEPROM

The Data EEPROM is readable and writable during normal operation over the whole Vdd range. The operation for Data EEPROM is based on a single byte. A write operation makes an erase-then-write cycle to take place on the allocated byte.

The Data EEPROM memory provides high erase and write cycles. A byte write automatically erases the location and writes the new value.



# 6.7.1 Data EEPROM Control Register

#### 6.7.1.1 RB (EEPROM Control Register)

The EECR (EEPROM Control Register) is the control register for configuring and initiating the control register status.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD    | WR    | EEWE  | EEDF  | EEPC  | -     | -     | -     |

#### Bit 7 (RD): Read control register

0: Does not execute EEPROM read

- **1:** Read EEPROM contents (RD can be set by software and is cleared by hardware after Read instruction is completed).
- Bit 6 (WR): Write control register
  - **0:** Write cycle to the EEPROM is completed.
  - 1: Initiate a write cycle (WR can be set by software and is cleared by hardware after Write cycle is completed).

#### Bit 5 (EEWE): EEPROM Write Enable bit

- **0:** Write to the EEPROM is prohibited.
- 1: Allows EEPROM write cycles
- Bit 4 (EEDF): EEPROM Detect Flag
  - **0:** Write cycle is completed.
  - 1: Write cycle is unfinished.
- Bit 3 (EEPC): EEPROM power-down control bit

0: Switch off the EEPROM

- 1: EEPROM is operating.
- Bits 2 ~ 0: Not used, set to "0" at all time.

#### 6.7.1.2 RC (128 Bytes EEPROM Address)

When accessing the EEPROM data memory, the RC (128 bytes EEPROM address register) holds the address to be accessed. According the operation, the RD (128 bytes EEPROM Data register) holds the data to be written, or the data read; at the address in the RC.

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| -     | EE_A6 | EE_A5 | EE_A4 | EE_A3 | EE_A2 | EE_A1 | EE_A0 |

Bits 7: Not used, set to "0" at all time.

Bits 6 ~ 0: 128 bytes EEPROM address



#### 6.7.1.3 RD (256 Bytes EEPROM Data)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EE_D7 | EE_D6 | EE_D5 | EE_D4 | EE_D3 | EE_D2 | EE_D1 | EE_D0 |

Bits 7 ~ 0: 128 bytes EEPROM data

### 6.7.2 Programming Step / Demonstration Example

#### Programming Step:

Follow these steps to write or read data from the EEPROM:

Step 1. Set the RB.EEPC bit to "1" for enable EEPROM power.

- Step 2. Write the address to RC (128 bytes EEPROM address) as follows:
  - 1) (a) Set the RB.EEWE bit to "1", if the write function is employed.
    - (b) Write the 8-bit data value to be programmed in the RD (256 bytes EEPROM data).
    - (c). Set the RB.WR bit to "1", then; execute write function.
  - 2) Set the RB.READ bit to "1", after which; execute read function.
- Step 3. Wait for the RB.EEDF or RB.WR to be cleared
- Step 4. For the next conversion, start from Step 2 again.
- **Step 5.** If you want to save power, make sure the EEPROM data is not used by clearing the RB.EEPC.

#### Demonstration Programs Example:

```
;Define control register and write data to EEPROM
RC == 0 \times 0C
RB == 0x0B
RD == 0 \times 0 D
Read == 0x07
WR == 0 \times 06
EEWE == 0x05
EEDF == 0x04
EEPC == 0x03
BS RB, EEPC
              ;Set the EEPROM power on
MOV A,@0x0A
MOV RC,A
             ;Assign the address from EEPROM
BS RB, EEWE
              ;Enable the EEPROM write function
MOV A,@0x55
MOV RD,A
              ;Set the data for EEPROM
BS RB,WR
               ;Write value to EEPROM
JBC RB,EEDF
               ;Check whether the EEPROM bit is completed or not
JMP $-1
```



# 6.8 Analog-to-Digital Converter (ADC)

The analog-to-digital circuitry consists of a 10-bit analog multiplexer, three control registers (AISR/R5 (Bank 2), ADCON/R6 (Bank 2), ADOC/R7 (Bank 2)), two data registers (ADDH, ADDL//R8, R9), and an ADC with 10-bit resolution. The analog reference voltage (Vref) and analog ground are connected via separate input pins. The functional block diagram of the ADC is shown below.

The ADC module utilizes successive approximation to convert the unknown analog signal into a digital value. The result is fed to the ADDH and ADDL. Input channels are selected by the analog input multiplexer via the ADCON register Bits ADIS2, ADIS1, and ADIS0.



Figure 6-18 Analog-to-Digital Conversion Functional Block Diagram

# 6.8.1 ADC Control Register (AISR/R5, ADCON/R6, ADOC/R7)

## 6.8.2 Bank 2 R5 AISR (ADC Input Select Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADE8  | ADE7  | ADE6  | ADE5  | ADE4  | ADE3  | ADE2  | ADE1  |

The AISR register defines the ADC pins as analog input or as digital I/O.

Bit 7 (ADE8): AD converter enable bit of P57 pin

- 0: Disable ADC8, P57 act as I/O pin
- 1: Enable ADC8 act as analog input pin
- Bit 6 (ADE7): AD converter enable bit of P56 pin
  - **0:** Disable ADC7, P56 act as I/O pin
  - 1: Enable ADC7 act as analog input pin



| Bit 5 | (ADE6) | : AD c | converter | enable | bit of | P77 | pin |
|-------|--------|--------|-----------|--------|--------|-----|-----|
|-------|--------|--------|-----------|--------|--------|-----|-----|

- 0: Disable ADC6, P77 functions as I/O pin
- 1: Enable ADC6 to function as analog input pin
- Bit 4 (ADE5): AD converter enable bit of P73 pin
  - 0: Disable ADC5, P73 act as I/O pin
  - 1: Enable ADC5 act as analog input pin
- Bit 3 (ADE4): AD converter enable bit of P63 pin.
  - 0: Disable ADC4, P63 act as I/O pin
  - 1: Enable ADC4 act as analog input pin
- Bit 2 (ADE3): AD converter enable bit of P62 pin.
  - **0:** Disable ADC3, P62 act as I/O pin
  - 1: Enable ADC3 act as analog input pin
- Bit 1 (ADE2): AD converter enable bit of P61 pin
  - 0: Disable ADC2, P61 functions as I/O pin
  - 1: Enable ADC2 to function as analog input pin
- Bit 0 (ADE1): AD converter enable bit of P60 pin
  - 0: Disable ADC1, P60 act as I/O pin
  - 1: Enable ADC1 act as analog input pin
  - The following table shows the priority of P60/AD1//INT.

| P60/ADC0//Int Pin Priority |        |     |  |  |  |  |  |  |
|----------------------------|--------|-----|--|--|--|--|--|--|
| Hight                      | Medium | Low |  |  |  |  |  |  |
| /INT                       | AD1    | P60 |  |  |  |  |  |  |

### 6.8.3 Bank 2 R6 ADCON (A/D Control Register)

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VREFS | CKR1  | CKR0  | ADRUN | ADPD  | ADIS2 | ADIS1 | ADIS0 |

Bit 7 (VREFS): Input source of the Vref of the ADC.

- **0:** Vref of the ADC is connected to Vdd (default value), and the P50/VREF pin carries out the function of P50
- 1: Vref of the ADC is connected to P50/VREF

#### Bit 6 ~ Bit 5 (CKR1 ~ CKR0): Prescaler of oscillator clock rate of ADC

| CKR1/CKR0 | <b>Operation Mode</b> | Max. Operation Frequency |
|-----------|-----------------------|--------------------------|
| 00        | F <sub>OSC</sub> /4   | 4 MHz                    |
| 01        | F <sub>osc</sub>      | 1 MHz                    |
| 10        | F <sub>osc</sub> /16  | 16 MHz                   |
| 11        | F <sub>OSC</sub> /2   | 2 MHz                    |



#### Bit 4 (ADRUN): ADC starts to run

**0:** Reset upon completion of AD conversion. This bit cannot be reset by software.

**1:** A/D conversion is started. This bit can be set by software.

#### Bit 3 (ADPD): ADC power-down mode

**0**: Switch off the resistor reference to save power even while the CPU is operating.

1: ADC is operating.

#### Bit 2~0 (ADIS2~ADIS0): AD input select bits

| ADIS2 | ADIS1 | ADIS0 | AD Input Pin |
|-------|-------|-------|--------------|
| 0     | 0     | 0     | AD1          |
| 0     | 0     | 1     | AD2          |
| 0     | 1     | 0     | AD3          |
| 0     | 1     | 1     | AD4          |
| 1     | 0     | 0     | AD5          |
| 1     | 0     | 1     | AD6          |
| 1     | 1     | 0     | AD7          |
| 1     | 1     | 1     | AD8          |

# 6.8.4 Bank 2 R7 ADOC (A/D Offset Calibration Register)

| Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2 | Bit 1  | Bit 0 |
|-------|-------|--------|--------|--------|-------|--------|-------|
| CALI  | SIGN  | VOF[2] | VOF[1] | VOF[0] | -     | OPADEN | OPADS |

Bit 7 (CALI): Calibration enable bit for A/D offset

- 0: Calibration disable
- 1: Calibration enable
- Bit 6 (SIGN): Polarity bit of offset voltage
  - 0: Negative voltage
  - 1: Positive voltage

### Bit 5 ~ Bit 3 (VOF[2] ~ VOF[0]): Offset voltage bits

| VOF[2] | VOF[1] | VOF[0] | Offset |
|--------|--------|--------|--------|
| 0      | 0      | 0      | 0LSB   |
| 0      | 0      | 1      | 1LSB   |
| 0      | 1      | 0      | 2LSB   |
| 0      | 1      | 1      | 3LSB   |
| 1      | 0      | 0      | 4LSB   |
| 1      | 0      | 1      | 5LSB   |
| 1      | 1      | 0      | 6LSB   |
| 1      | 1      | 1      | 7LSB   |



Bits 2: Not used, set to "0" at all time

Bit 1 (OPADEN): OPOUT connects to ADC Enable bit

**0:** ADC is not dedicated to OP output.

**1:** ADC is dedicated to OP output.

| OPADEN | ADIS2 | ADIS1 | ADIS0 | AD Input Select |
|--------|-------|-------|-------|-----------------|
| 1      | ×     | ×     | ×     | OPx output      |
| 0      | ×     | ×     | ×     | ADx             |

Bit 0 (OPADS): OPOUT connects to ADC select

0: OP1 output connects to AD

1: OP2 output connects to AD

## 6.8.5 ADC Data Buffer (ADDH, ADDL/R8, R9)

When the A/D conversion is completed, the result is loaded to the ADDH, ADDL. The ADRUN bit is cleared, and the ADIF is set.

## 6.8.6 A/D Sampling Time

The accuracy, linearity, and speed of the successive approximation A/D converter are dependent on the properties of the ADC and the comparator. The source impedance and the internal sampling impedance directly affect the time required to charge the sample holding capacitor. The application program controls the length of the sample time to meet the specified accuracy. Generally speaking, the program should wait for 2µs for each K $\Omega$  of the analog source impedance and at least 2µs for the low-impedance source. The maximum recommended impedance for analog source is 10K $\Omega$  at Vdd=5V. After the analog input channel is selected, the acquisition time must be completely done before the conversion can be started.

# 6.8.7 A/D Conversion Time

CKR0 and CKR1 select the conversion time (Tct), in terms of instruction cycles. This allows the MCU to run at the maximum frequency without sacrificing the accuracy of A/D conversion. For the A96F902N, the conversion time per bit is  $1\mu$ s. The following table shows the relationship between Tct and the maximum operating frequencies.

| CKR0:<br>CKR1 | Operation<br>Mode | Max. Operating<br>Frequency | Max. Conversion<br>Rate Per Bit | Max. Conversion<br>Rate(10bit) |
|---------------|-------------------|-----------------------------|---------------------------------|--------------------------------|
| 00            | Fosc/4            | 4 MHz                       | 4 MHz (1µs)                     | (10+9)*1µs=19us(52.6kHz)       |
| 01            | Fosc              | 1 MHz                       | 1 MHz (1µs)                     | (10+9)*1µs=19us(52.6kHz)       |
| 10            | Fosc/16           | 16 MHz                      | 16 MHz (1µs)                    | (10+9)*1µs=19us(52.6kHz)       |
| 11            | Fosc/2            | 2 MHz                       | 2 MHz (1µs)                     | (10+9)*1µs=19us(52.6kHz)       |



AD convertion time (10bits): 3 fsys (DGD) + 1.5 A/D (DGD) + 4A/D(AMD) + 10A/D (AMD).

NOTE

- The pin that is not used as analog input pin, can be used as a regular input or output pin.
- During conversion, do not perform output instruction to maintain precision for all of the pins.

# 6.8.8 A/D Operation during Sleep Mode

In order to obtain a more accurate ADC value and reduced power consumption, the A/D conversion remains operational during Sleep mode. As the SLEP instruction is executed, all the MCU operations will stop except for the Oscillators, TCC, TC2, TC3, and A/D conversion.

The AD Conversion is considered completed when:

- 1. ADRUN bit of R6 register Is cleared to "0".
- 2. Wake-up from A/D conversion remains in operation during Sleep Mode.

The result is fed to the ADDATA, ADOC when the conversion is completed. If the ADWE is enabled, the device will wake up. Otherwise, the A/D conversion will be shut off, no matter what the status of ADPD bit is.

## 6.8.9 Programming Steps/Considerations

### Programming Steps

Follow the steps below to obtain data from the ADC:

- 1. Write to the eight bits (ADE8 ~ ADE1) on the R5 (AISR) register to define the characteristics of R6 (digital I/O, analog channels, and voltage reference pin).
- 2. Write to the R6/ADCON register to configure the AD module:
  - a) Select A/D input channel (ADIS1 ~ ADIS0)
  - b) Define the A/D conversion clock rate (CKR1 ~ CKR0)
  - c) Select the input source of the VREFS of the ADC
  - d) Set the ADPD bit to "1" to begin sampling
- 3. Set the ADWE bit, if the wake-up function is employed.
- 4. Set the ADIE bit, if the interrupt function is employed.
- 5. Write "ENI" instruction, if the interrupt function is employed.
- 6. Set the ADRUN bit to "1".
- 7. Wait for wake-up or for ADRUN bit to clear to "0"
- 8. Read ADDATA, ADOC conversion data registers
- 9. Clear the interrupt flag bit (ADIF) when A/D interrupt function occurrs.



10. For the next conversion, repeat from Step 1 or Step 2 as required. At least 2 Tct is required before the next acquisition starts.

NOTE

To obtain an accurate values, it is necessary to avoid any data transition on the I/O pins during AD conversion.

#### Sample Demo Programs

| ;Define a General Regi | sters                                        |
|------------------------|----------------------------------------------|
| R_0 == 0               | ;Indirect addressing register                |
| PSW == 3               | ;Status register                             |
| PORT5 == 5             |                                              |
| PORT6 == 6             |                                              |
| RE== OXE               | ;wake-up control resister                    |
| RF== OXF               | ;Interrupt status register                   |
| ;Define the Control Re | gister                                       |
| IOC50 == 0X5           | ;Control Register of Port 5                  |
| IOC60 == 0X6           | ;Control Register of Port 6                  |
| C_INT== 0XF            | ;Interrupt Control Register                  |
| ;ADC Control Registers |                                              |
| ADDATA == 0x8          | ;The contents are the results of ADC         |
| AISR == $0 \times 08$  | ;ADC intput select register                  |
| ADCON == $0x6$         | ; 7 6 5 4 3 2 1 0                            |
|                        | VREFS CKR1 CKR0 ADRUN ADPD ADIS2 ADIS1 ADIS0 |
| ;Define Bits in ADCON  |                                              |
| ADRUN == 0x4           | ;ADC is executed as the bit is set           |
| ADPD == 0x3            | ;Power Mode of ADC                           |
| ;Program Starts        |                                              |
| ORG 0                  | ;Initial address                             |
| JMP INITIAL            |                                              |
| ORG 0x30               | ;Interrupt vector                            |
| ;                      |                                              |
| ;                      |                                              |
| (User's program)       |                                              |
| ;                      |                                              |
| ,<br>CLR RF            | To clear the ADIF bit                        |
| BS ADCON. ADRIIN       | :To start executing the next AD conversion   |
|                        | : if necessary                               |
|                        | ,                                            |

RETI



| INITIAL:                     |                                        |
|------------------------------|----------------------------------------|
| MOV A, @0B0000001            | ;To define P60 as an analog input      |
| MOV AISR, A                  |                                        |
| MOV A, @0B00001000           | ;To select P60 as an analog input      |
|                              | ; channel, and AD power on             |
| MOV ADCON, A                 | ;To define P60 as an input pin and     |
|                              | ; set clock fale at losc/10            |
| En ADC:                      |                                        |
| MOV A, @0BXXXXXX1            | ;To define P60 as an input pin, and    |
|                              | ; the others are dependent on          |
|                              | ; on applications                      |
| IOW PORT6                    |                                        |
| MOV A, @OBXXXX1XXX           | ;Enable the ADWE wake-up function      |
|                              | ; of ADC. "X" is per application.      |
| MOV RE, A                    |                                        |
| MOV A, @0BXXXX1XXX           | ;Enable the ADIE interrupt function    |
|                              | ; of ADC. "X" is per application.      |
| IOM C_INT                    |                                        |
| FINT                         | Enable the interrupt function          |
| BS ADCON. ADRUN              | Start to run the ADC                   |
|                              | ,                                      |
| ;If the interrupt function . | is employed, the following three lines |
| ; may be ignored.            |                                        |
| POLLING:                     |                                        |
| JBC ADCON, ADRUN             | ;To check the ADRUN bit continuously   |
| JMP POLLING                  | ;ADRUN bit will be reset as the AD     |
|                              | ; conversion is completed.             |
| ;                            |                                        |
| ;                            |                                        |
| (User program)               |                                        |
| ,                            |                                        |
| ,                            |                                        |



# 6.9 Timer/Counter 2



Figure 6-19 Timer / Counter 2 Mode Configuration

# 6.9.1 Timer Mode

In Timer mode, counting up is performed by using the internal clock. When the contents of the up-counter match with TCR2 (TCR2H+TCR2L), interrupt is then generated and the counter is cleared. Counting up resumes after the counter is cleared.



Figure 6-20 Timer Mode Timing Diagram



# 6.9.2 Counter Mode

In Counter mode, counting up is performed by using the external clock input pin (TC2 pin) and either rising or falling can be selected by setting TC2ES. When the contents of the up-counter match with TCR2 (TCR2H+TCR2L), interrupt is then generated and counter is cleared. Counting up resumes after the counter is cleared.



Figure 6-21 Counter Mode Timing Diagram (INT2ES = 1)

# 6.9.2 Window Mode

In Window mode, counting up is performed on a rising edge of the pulse that is logical AND of an internal clock and of the TC2 pin (window pulse). When the contents of the up-counter match with TCR2 (TCR2H+TCR2L), interrupt is then generated and the counter is cleared. The frequency (window pulse) must be slower than the selected internal clock.



Figure 6-22 Window Mode Timing Diagram



# 6.10 Timer/Counter 3



Figure 6-23 Timer / Counter 3 Mode Configuration

### Timer Mode

In Timer mode, counting up is performed using internal clock (rising edge trigger). When the contents of the up-counter match with TCR3, interrupt is then generated and the counter is cleared. Counting up resumes after the counter is cleared.

### Counter Mode

In Counter mode, counting up is performed using the external clock input pin (TC3 pin). When the contents of the up-counter match with TCR3, interrupt is then generated and the counter is cleared. Counting up resumes after the counter is cleared.

### Programmable Divider Output (PDO) Mode

In Programmable Divider Output (PDO) mode, counting up is performed using the internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F output is toggled and the counter is cleared each time a match is found. The F/F output is inverted and output to /PDO pin. This mode can generate 50% duty pulse output. **The F/F can be initialized by program and it is initialized to "0" during reset.** A TC3 interrupt is generated each time the /PDO output is toggled.







### Pulse Width Modulation (PWM) Output Mode

In Pulse Width Modulation (PWM) Output mode, counting up is performed using internal clock. The contents of TCR3 are compared with the contents of the up-counter. The F/F is toggled when a match is found. Then the counter continues counting, and the F/F is toggled again when the counter overflows, after which the counter is cleared. The F/F output is inverted and output to /PWM pin. A TC3 interrupt is generated each time an overflow occurs. **TCR3 is configured as a 2-stage shift register and, during output; will not switch until one output cycle is completed even if TCR3 is overwritten.** Therefore, the output can be changed continuously. Also, the TRC3 is shifted for the first time by setting TC3S to "1" after data is loaded to TCR3.



Figure 6-25 PWM Mode Timing Diagram

# 6.11 Comparator

The A96F902N has one comparator comprising of two analog inputs and one output. The comparator can be utilized to wake up A96F902N from sleep mode. The comparator circuit diagram is depicted in the figure below.



Figure 6-26 Operational Amplifier Comparator Block Diagram



# 6.11.1 External Reference Signal

The analog signal that is presented at Cin– compares to the signal at Cin+, and the digital output (CO) of the comparator is adjusted accordingly by taking the following notes into considerations:

#### NOTE

- The reference signal must be between Vss and Vdd.
- The reference voltage can be applied to either pin of the comparator.
- Threshold detector applications may be of the same reference.
- The comparator can operate from the same or different reference sources.

## 6.11.2 Comparator Outputs

- The compared result is stored in the CPxOUT of Bank 3 R7.
- The comparator outputs are sent to CO (P70) by programming Bit 5, Bit 6<CO1S1, CO1S0> of the Bank3 R7 register to <1, 0>. See Section 6.1.31, Bank 3 R7 (CMPCON: Comparator Control Register) for Comparator/OP select bits function description.

The following figure shows the Comparator Output block diagram.



Figure 6-27 Comparator Output Configuration

# 6.11.3 Using Comparator as an Operation Amplifier

The comparator can be used as an operation amplifier if a feedback resistor is externally connected from the input to the output. In this case, the Schmitt trigger function can be disabled for power saving purposes, by setting Bit 6, Bit 5<CO1S1, CO1S0> of the Bank3 R7 register to <1, 1>. See Section 6.1.31, Bank3 R7 (*CMPCON: Comparator Control Register*) for Comparator/OP select bits function description.



# 6.11.4 Comparator Interrupt

- CMPIE1 (IOCE.7) must be enabled for the "ENI" instruction to take effect.
- Interrupt is triggered whenever a change occurs on the comparator output pin.
- The actual change on the pin can be determined by reading the Bit CP1OUT, Bank 3 R7<6>.
- CMPIF1 (RF.7), the comparator interrupt flag, can only be cleared by software.

## 6.11.5 Wake-up from Sleep Mode

- If enabled, the comparator remains active and the interrupt remains functional, even in Sleep mode.
- If a mismatch occurs, the interrupt will Wake up the device from Sleep mode.
- The power consumption should be taken into consideration for the benefit of energy conservation.
- If the function is unemployed during Sleep mode, turn off the comparator before entering into Sleep mode.

# 6.12 Oscillator

## 6.12.1 Oscillator Modes

The device can be operated in four different oscillator modes, such as Internal RC oscillator mode (IRC), External RC oscillator mode (ERC), High Crystal oscillator mode (HXT), and Low Crystal oscillator mode (LXT). You can select one of such modes by programming OSC2, OCS1, and OSC0 in the Code Option register. The following table depicts how these four modes are defined.

| Mode                                              | OSC2 | OSC1 | OSC0 |
|---------------------------------------------------|------|------|------|
| XT (Crystal oscillator mode) <sup>1</sup>         | 0    | 0    | 0    |
| HXT (High Crystal oscillator mode) <sup>2</sup>   | 0    | 0    | 1    |
| LXT1 (Low Crystal 1 oscillator mode) <sup>3</sup> | 0    | 1    | 0    |
| LXT2 (Low Crystal 2 oscillator mode) <sup>4</sup> | 0    | 1    | 1    |
| IRC mode, OSCO (P54) act as I/O pin               | 1    | 0    | 0    |
| IRC mode, OSCO (P54) act as RCOUT pin             | 1    | 0    | 1    |
| ERC mode, OSCO (P54) act as I/O pin               | 1    | 1    | 0    |
| ERC mode, OSCO (P54) act as RCOUT pin             | 1    | 1    | 1    |

#### Oscillator Modes as Defined by OSC2 ~ OSC0

<sup>1</sup> The Frequency range of HXT mode is 16 MHz ~ 6 MHz.

<sup>2</sup> The Frequency range of XT mode is 6 MHz ~ 1 MHz.

<sup>3</sup> The Frequency range of LXT1 mode is 1 MHz ~ 100kHz.

<sup>4</sup> The Frequency range of LXT2 mode is 32kHz.



In LXT, XT, HXT, and ERC modes, OSCI and OSCO are implemented. They cannot be used as normal I/O pins.

In IRC mode, P55 is used as normal I/O pin.

The maximum operating frequency of the crystal/resonator on the different VDD is shown below:

#### Summary of Maximum Operating Speeds

| Conditions                 | VDD | Max Fxt. (MHz) |
|----------------------------|-----|----------------|
|                            | 2.5 | 4.0            |
| Two cycles with two clocks | 3.0 | 8.0            |
|                            | 5.0 | 20.0           |

# 6.12.2 Crystal Oscillator/Ceramic Resonators (Crystal)

The A96F902N can be driven by an external clock signal through the OSCI pin as illustrated below.



Figure 6-28 External Clock Input Circuit

In most applications, Pin OSCI and Pin OSCO can be connected with a crystal or ceramic resonator to generate oscillation as depicted in the following figure. The same thing applies to HXT mode or LXT mode.



Figure 6-29 Crystal/Resonator Circuit



The following table provides the recommended values of C1 and C2. Since each resonator has its own attributes, you should refer to its specification for appropriate values of C1 and C2. A serial resistor RS, may be necessary for AT strip cut crystal or low frequency mode.

| Oscillator Type    | Frequency Mode       | Frequency    | C1 (pF) | C2 (pF) |
|--------------------|----------------------|--------------|---------|---------|
|                    |                      | 100 kHz      | 67pF    | 67pF    |
|                    | LXT1<br>(100K~1 MHz) | 200 kHz      | 30pF    | 30pF    |
|                    |                      | 455 kHz      | 50pF    | 50pF    |
| Ceramic Resonators |                      | 1.0 MHz      | 30pF    | 30pF    |
|                    |                      | 1.0 MHz      | 30pF    | 30pF    |
|                    | (1M-6 MHz)           | 2.0 MHz      | 30pF    | 30pF    |
|                    |                      | 4.0 MHz      | 30pF    | 30pF    |
|                    | LXT2 (32.768kHz)     | 32.768 kHz   | 40pF    | 40pF    |
|                    |                      | 100 kHz      | 67pF    | 67pF    |
|                    | LXT1<br>(100K~1 MHz) | 200 kHz      | 30pF    | 30pF    |
|                    |                      | 455 kHz      | 30pF    | 30pF    |
| Crystal Oscillator |                      | 1.0 MHz      | 30pF    | 30pF    |
|                    | VT                   | 455 kHz      | 30pF    | 30pF    |
|                    |                      | 1.0 MHz      | 30pF    | 30pF    |
|                    | ∧ I<br>(1~6 MHz)     | 2.0 MHz      | 30pF    | 30pF    |
|                    | (1~0 10112)          | 4.0 MHz 30pF | 30pF    | 30pF    |
|                    |                      | 6.0 MHz      | 30pF    | 30pF    |
|                    |                      | 6.0 MHz      | 30pF    | 30pF    |
|                    | υνт                  | 8.0 MHz      | 30pF    | 30pF    |
|                    | □⊼T<br>(6~20 MHz)    | 10.0 MHz     | 30pF    | 30pF    |
|                    |                      | 16.0 MHz     | 20pF    | 20pF    |
|                    |                      | 20.0 MHz     | 15pF    | 15pF    |

## ■ Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator

# 6.12.3 External RC Oscillator Mode

For some applications that do not need a very precise timing calculation, the RC oscillator (Figure 6-30) offers a cost-effective oscillator configuration. Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature. Moreover, the frequency also changes slightly from one chip to another due to manufacturing process variation.

In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF, and that of Rext should not be greater than 1 M $\Omega$ . If they cannot be kept in this range, the frequency is easily affected by noise, humidity, and leakage.

The smaller the Rext in the RC oscillator is, the faster its frequency will be. On the contrary, for very low Rext values, for instance, 1 K $\Omega$ , the oscillator becomes unstable since the NMOS cannot correctly discharge the capacitance current.



Based on the above reasons, it must be kept in mind that the supply voltage, operation temperature, RC oscillator components, the package types, as well s the PCB layout, could affect the system frequency.



Figure 6-30 External RC Oscillator Mode Circuit

| Cext     | Rext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average Fosc 5V, 25°C | Average Fosc 3V, 25°C |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|          | 3.3k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5 MHz               | 3.2 MHz               |
| 20 pE    | 5.1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5 MHz               | 2.3 MHz               |
| 20 pr    | 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30 MHz              | 1.25 MHz              |
|          | 100k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140kHz                | 140kHz                |
|          | 3.3k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.27 MHz              | 1.21 MHz              |
| 100 pE   | 5.1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 850kHz                | 820kHz                |
| 100 pF – | 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450kHz                | 450kHz                |
|          | Average Post SV, 25 C           3.3k         3.5 MHz           5.1k         2.5 MHz           10k         1.30 MHz           10k         140kHz           3.3k         1.27 MHz           5.1k         850kHz           10k         450kHz           10k         450kHz           10k         450kHz           10k         450kHz           10k         450kHz           10k         450kHz           10k         48kHz           3.3k         560kHz           10k         196kHz           100k         20kHz | 50kHz                 |                       |
|          | 3.3k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 560kHz                | 540kHz                |
| 200 pE   | 5.1k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 370kHz                | 360kHz                |
| 300 pF   | 10k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 196kHz                | 192kHz                |
|          | 100k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20kHz                 | 20kHz                 |

## External RC Oscillator Frequencies

NOTE: Measured based on DIP packages. Theoretical values for design reference only.

# 6.12.4 Internal RC Oscillator Mode

A96F902N offers a versatile internal RC mode with a default frequency value of 4MHz. Internal RC oscillator mode has other frequencies (8MHz, 16MHz, and 1MHz) that can be set by Code Option (Word 1), RCM1 and RCM0 when COBS=0, or set by Bank 1 R8 Bit7, 6 when COBS=1. All these four main frequencies can be calibrated by programming the Code Option (Word 1) bits, C4~C0.

#### ■ Internal RC Drift Rate (Ta=25°C, VDD=5 V ± 5%, VSS=0V)

|             | Drift Rate                  |                        |         |         |  |  |  |  |
|-------------|-----------------------------|------------------------|---------|---------|--|--|--|--|
| Internal RC | Temperature<br>(-40°C~85°C) | Voltage<br>(2.2V~5.5V) | Process | Total   |  |  |  |  |
| 1 MHz       | ± 3%                        | ± 4%                   | ± 2.5%  | ± 9.5%  |  |  |  |  |
| 4 MHz       | ± 3%                        | ± 4%                   | ± 2.5%  | ± 9.5%  |  |  |  |  |
| 8 MHz       | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |
| 16 MHz      | ± 3%                        | ± 5%                   | ± 2.5%  | ± 10.5% |  |  |  |  |



# 6.13 Code Option Register

The A96F902N has a Code Option Word that is not part of the normal program memory. The option bits cannot be accessed during normal program execution.

Code Option Register and Customer ID Register arrangement distribution:

| Word 0       | Word 1       | Word 2       |
|--------------|--------------|--------------|
| Bit 12~Bit 0 | Bit 12~Bit 0 | Bit 12~Bit 0 |

# 6.13.1 Code Option Register (Word 0)

|          | Word 0 |        |         |          |       |       |         |       |       |       |       |       |       |
|----------|--------|--------|---------|----------|-------|-------|---------|-------|-------|-------|-------|-------|-------|
| Bit      | Bit 12 | Bit 11 | Bit 10  | Bit 9    | Bit 8 | Bit 7 | Bit 6   | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mnemonic | -      | NRHL   | NRE     | RESETENB | CLKS1 | CLKS0 | ENWDTB  | OSC2  | OSC1  | OSC0  | PR2   | PR1   | PR0   |
| 1        | -      | 8/fc   | Disable | Enable   | High  | High  | Enable  | High  | High  | High  | High  | High  | High  |
| 0        | -      | 32/fc  | Enable  | Disable  | Low   | Low   | Disable | Low   | Low   | Low   | Low   | Low   | Low   |

Bit 12: Not used, always set to "0"

Bit 11 (NRHL): Noise rejection high/low pulse define bit. INT pin is falling edge trigger.

1: Pulses equal to 8/fc [s] is regarded as signal.

0: Pulses equal to 32/fc [s] is regarded as signal (default).



Bit 10 (NRE): Noise rejection enable. INT pin is falling edge trigger.

- 1: Disable noise rejection
- **0:** Enable noise rejection (default) but under Low Crystal oscillator (LXT) mode, the noise rejection circuit is always disabled.

### Bit 9 (RESETENB): Reset pin enable bit

1: Enable, P83//RESET=>RESET pin.

0: Disable, P83//RESET=>P83 (default)

### Bit 8 ~ Bit 7 (CLKS1 ~ CLKS0): Instruction period option bit

| Instruction Period | CLKS1 | CLKS0 |
|--------------------|-------|-------|
| 4 clocks           | 0     | 0     |
| 2 clocks           | 0     | 1     |
| 8 clocks           | 1     | 0     |
| 16 clocks          | 1     | 1     |

Refer to Section 6.17, Instruction Set.



#### Bit 6 (ENWDTB): Watchdog timer enable bit

- 1: Enable
- 0: Disable

#### Bit 5 ~ Bit 3 (OSC2 ~ OSC0): Oscillator mode selection bits

| Mode                                              | OSC2 | OSC1 | OSC0 |
|---------------------------------------------------|------|------|------|
| XT (Crystal oscillator mode) <sup>1</sup>         | 0    | 0    | 0    |
| HXT (High Crystal oscillator mode) <sup>2</sup>   | 0    | 0    | 1    |
| LXT1 (Low Crystal 1 oscillator mode) <sup>3</sup> | 0    | 1    | 0    |
| LXT2 (Low Crystal 2 oscillator mode) <sup>4</sup> | 0    | 1    | 1    |
| IRC mode, OSCO (P54) act as I/O pin               | 1    | 0    | 0    |
| IRC mode, OSCO (P54) act as RCOUT pin             | 1    | 0    | 1    |
| ERC mode, OSCO (P54) act as I/O pin               | 1    | 1    | 0    |
| ERC mode, OSCO (P54) act as RCOUT pin             | 1    | 1    | 1    |

<sup>1</sup> The Frequency range of HXT mode is 16 MHz ~ 6 MHz.

The Frequency range of XT mode is 6 MHz ~ 1 MHz. The Frequency range of LXT1 mode is 1 MHz ~ 100kHz.

<sup>4</sup> The Frequency range of LXT2 mode is 32kHz.

# Bit 2 ~ Bit 0 (PR2 ~ PR0): Protect Bit. PR2~PR0 are protect bits. The protect types

### are follows:

| PR2 | PR1 | PR0 | Protect |
|-----|-----|-----|---------|
| 1   | 1   | 1   | Enable  |
| 0   | 0   | 0   | Disable |

## 6.13.2 Code Option Register (Word 1)

| Word 0   |        |        |        |       |       |       |       |       |       |       |       |       |       |
|----------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit      | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mnemonic | COBS   | TCEN   | -      | -     | C4    | C3    | C2    | C1    | C0    | RCM1  | RCM0  | LVR1  | LVR0  |
| 1        | High   | TCC    | -      | -     | High  |
| 0        | Low    | P77    | -      | -     | Low   |

Bits 12 (COBS): Code Option bit selection

0: IRC frequency select for code option (default)

1: IRC frequency select internal register by Bank1 R8(7,6)

#### Bit 11 (TCEN): TCC enable bit

0: P77/TCC is set as P77.

1: P77/TCC is set as TCC.

Bit 10 ~ Bit 9: Fixed at "1"



| Bit 8 ~ Bit 4 (C4 ~ C0): Internal RC mode calibration bits. | C4 ~ C0 must be set to "0" |
|-------------------------------------------------------------|----------------------------|
| only (auto-calibration).                                    |                            |

| Bit 3 ~ Bit 2 ( | (RCM1 ~ F | RCM0): RC | mode selection bits |
|-----------------|-----------|-----------|---------------------|
|-----------------|-----------|-----------|---------------------|

| RCM 1 | RCM 0 | *Frequency (MHz) |
|-------|-------|------------------|
| 0     | 0     | 4                |
| 0     | 1     | 16               |
| 1     | 0     | 8                |
| 1     | 1     | 1                |

## Bit 1 ~ Bit 0 (LVR1 ~ LVR0): Low voltage reset enable bits

| LVR1 | LVR0 | Reset Level | Release Level |
|------|------|-------------|---------------|
| 0    | 0    | NA          | NA            |
| 0    | 1    | 2.7V        | 2.9V          |
| 1    | 0    | 3.5V        | 3.7V          |
| 1    | 1    | 4.0V        | 4.2V          |

**NOTE:** LVR1, LVR0="0, 0": LVR disable, power- on reset point of A96F902N is 2.0V.

LVR1, LVR0="**0**, **1**": If Vdd < 2.7V, the A96F902N will reset. LVR1, LVR0="**1**, **0**": If Vdd < 3.5V, the A96F902N will reset. LVR1, LVR0="**1**, **1**": If Vdd < 4.0V, the A96F902N will reset.

### 6.13.3 Customer ID Register (Word 2)

| Word 0   |        |        |        |       |       |       |       |       |        |       |       |       |       |
|----------|--------|--------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| Bit      | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Mnemonic | SC3    | SC2    | SC1    | SC0   | -     | EFTIM | -     | -     | SFS    | Х     | Х     | Х     | Х     |
| 1        | High   | High   | High   | High  | -     | 20MHz | -     | -     | 128kHz | High  | High  | High  | High  |
| 0        | Low    | Low    | Low    | Low   | -     | 10MHz | -     | -     | 16kHz  | Low   | Low   | Low   | Low   |

Bits 12 ~ 9 (SC3 ~ SC0): sub-frequency calibrator (WDT frequency auto calibration)

#### Bit 8: Fixed at "0"

- Bit 7 (EFTIM): EFT improvement. If MCU is at VDD=5V with working frequency of <12 MHz, or at VDD=3V with working frequency of <6 MHz, enabling this function can improve the performance of the electrical fast transient (EFT) test. If MCU is at VDD=5V and working frequency is >12 MHz, choose EFTIM=1
  - **0:** 10 MHz
  - 1: 20 MHz
- Bits 6~5: Fixed to "0"
- Bits 4 (SFS): Sub-frequency select.
  - 0: 16kHz (WDT frequency)
    - **1:** 128kHz.
- Bits 3~0: Customer's ID code



# 6.14 Power on Considerations

Any microcontroller is not guaranteed to start to operate properly before the power supply stabilizes into steady state. The A96F902N is equipped with a built-in Power-on Voltage Detector (POVD) with a detecting level of 2.0V. It will work well if Vdd rises fast enough (50 ms or less). However, under critical applications; extra devices may still be required to assist in solving power-up problems.

# 6.15 External Power-on Reset Circuit

The circuit shown in Figure 6-31 uses an external RC to generate a reset pulse. The pulse width (time constant) should be kept long enough for Vdd to achieve minimum operation voltage. This circuit is used when the power supply has slow rising time. As the current leakage from the /RESET pin is  $\pm 5\mu$ A, it is recommended that R should not



Figure 6-31 External Power-up Reset Circuit

be greater than  $40K\Omega$  in order for the /RESET pin voltage to remain at below 0.2V. The diode (D) functions as a short circuit at the moment of power down. The capacitor (C) will discharge rapidly and fully. The current-limited resistor (Rin), will prevent high current or ESD (electrostatic discharge) from flowing to pin /RESET.

# 6.16 Residue-Voltage Protection

When battery is replaced, the device power (Vdd) is taken off but residue-voltage remains. The residue-voltage may trip below Vdd minimum, but not to zero. This condition may cause a poor power-on reset. Figures below show how to accomplish a proper residue-voltage protection circuit.

Vdd



Figure 6-32 Circuit 1 for the Residue Voltage Protection



Vdd


## 6.17 Instruction Set

Each instruction in the Instruction Set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of two oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g., "SUB R2,A", "BS(C) R2,6", "CLR R2", etc.). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

- A) Change one instruction cycle to consist of four oscillator periods.
- B) "JMP", "CALL", "RET", "RETL", "RETI" commands are executed with one instruction cycle. The conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") commands which were tested to be true, are executed within two instruction cycles. The instructions that are written to the program counter also take two instruction cycles.

Case A is selected by the CODE Option bit, called CLK. One instruction cycle consists of two oscillator clocks if CLK is low and four oscillator clocks if CLK is high.

Note that once the four oscillator periods within one instruction cycle is selected as in Case (A), the internal clock source to TCC should be CLK=Fosc/4, instead of Fosc / 2 as indicated in Figure 6-11 (*TCC and WDT Block Diagram*) of Section 6.3.

In addition, the Instruction Set also has the following features:

- 1) Every bit of any register can be set, cleared, or tested directly.
- 2) The I/O register can be regarded as general register. That is, the same instruction can operate on the I/O register.



#### ■ Instruction Set Table:

The following symbols are used in the following table:

- **"R"** Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- "b" Bit field designator that selects the value for the bit located in the Register "**R**" and which affects the operation.
- "K" 8 or 10-bit constant or literal value

| <b>Binary Instruction</b> | Hex  | Mnemonic | Operation                                            | Status Affected   |
|---------------------------|------|----------|------------------------------------------------------|-------------------|
| 0 0000 0000 0000          | 0000 | NOP      | No Operation                                         | None              |
| 0 0000 0000 0001          | 0001 | DAA      | Decimal Adjust A                                     | С                 |
| 0 0000 0000 0010          | 0002 | CONTW    | $A \rightarrow CONT$                                 | None              |
| 0 0000 0000 0011          | 0003 | SLEP     | $0 \rightarrow WDT$ , Stop oscillator                | T, P              |
| 0 0000 0000 0100          | 0004 | WDTC     | $0 \rightarrow WDT$                                  | T, P              |
| 0 0000 0000 rrrr          | 000r | IOW R    | $A \rightarrow IOCR$                                 | None <sup>1</sup> |
| 0 0000 0001 0000          | 0010 | ENI      | Enable Interrupt                                     | None              |
| 0 0000 0001 0001          | 0011 | DISI     | Disable Interrupt                                    | None              |
| 0 0000 0001 0010          | 0012 | RET      | $[Top \text{ of Stack}] \to PC$                      | None              |
| 0 0000 0001 0011          | 0013 | RETI     | [Top of Stack] $\rightarrow$ PC,<br>Enable Interrupt | None              |
| 0 0000 0001 0100          | 0014 | CONTR    | $\text{CONT} \rightarrow \text{A}$                   | None              |
| 0 0000 0001 rrrr          | 001r | IOR R    | $IOCR \to A$                                         | None <sup>1</sup> |
| 0 0000 01rr rrrr          | 00rr | MOV R,A  | $A \rightarrow R$                                    | None              |
| 0 0000 1000 0000          | 0080 | CLRA     | $0 \rightarrow A$                                    | Z                 |
| 0 0000 11rr rrrr          | 00rr | CLR R    | $0 \rightarrow R$                                    | Z                 |
| 0 0001 00rr rrrr          | 01rr | SUB A,R  | $R-A \rightarrow A$                                  | Z, C, DC          |
| 0 0001 01rr rrrr          | 01rr | SUB R,A  | $R-A \rightarrow R$                                  | Z, C, DC          |
| 0 0001 10rr rrrr          | 01rr | DECA R   | $R-1 \rightarrow A$                                  | Z                 |
| 0 0001 11rr rrrr          | 01rr | DEC R    | $R-1 \rightarrow R$                                  | Z                 |
| 0 0010 00rr rrrr          | 02rr | OR A,R   | $A \lor R \to A$                                     | Z                 |
| 0 0010 01rr rrrr          | 02rr | OR R,A   | $A \lor R \to R$                                     | Z                 |
| 0 0010 10rr rrrr          | 02rr | AND A,R  | A & $R \rightarrow A$                                | Z                 |
| 0 0010 11rr rrrr          | 02rr | AND R,A  | A & $R \rightarrow R$                                | Z                 |
| 0 0011 00rr rrrr          | 03rr | XOR A,R  | $A \oplus R \to A$                                   | Z                 |
| 0 0011 01rr rrrr          | 03rr | XOR R,A  | $A \oplus R \to R$                                   | Z                 |
| 0 0011 10rr rrrr          | 03rr | ADD A,R  | $A + R \rightarrow A$                                | Z, C, DC          |
| 0 0011 11rr rrrr          | 03rr | ADD R,A  | $A + R \rightarrow R$                                | Z, C, DC          |
| 0 0100 00rr rrrr          | 04rr | MOV A,R  | $R \rightarrow A$                                    | Z                 |
| 0 0100 01rr rrrr          | 04rr | MOV R,R  | $R \rightarrow R$                                    | Z                 |
| 0 0100 10rr rrrr          | 04rr | COMA R   | $/R \rightarrow A$                                   | Z                 |
| 0 0100 11rr rrrr          | 04rr | COM R    | $/R \rightarrow R$                                   | Z                 |
| 0 0101 00rr rrrr          | 05rr | INCA R   | $R+1 \rightarrow A$                                  | Z                 |
| 0 0101 01rr rrrr          | 05rr | INC R    | $R+1 \rightarrow R$                                  | Z                 |

This instruction is applicable to IOC5~IOC7, IOCA ~ IOCF only.



| (Contin   | nuntion) |
|-----------|----------|
| (COIIIII) | iualion) |

| <b>Binary Instruction</b> | Hex  | Mnemonic | Operation                                                                                                                      | Status Affected   |
|---------------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 0 0101 10rr rrrr          | 05rr | DJZA R   | $R-1 \rightarrow A$ , skip if zero                                                                                             | None              |
| 0 0101 11rr rrrr          | 05rr | DJZ R    | $R-1 \rightarrow R$ , skip if zero                                                                                             | None              |
| 0 0110 00rr rrrr          | 06rr | RRCA R   | $ \begin{array}{l} R(n) \rightarrow A(n\text{-}1), \\ R(0) \rightarrow C,  C \rightarrow A(7) \end{array} $                    | С                 |
| 0 0110 01rr rrrr          | 06rr | RRC R    | $\begin{array}{l} R(n) \rightarrow R(n\text{-}1), \\ R(0) \rightarrow C,  C \rightarrow R(7) \end{array}$                      | С                 |
| 0 0110 10rr rrrr          | 06rr | RLCA R   | $ \begin{array}{l} R(n) \to A(n+1), \\ R(7) \to C,  C \to A(0) \end{array} $                                                   | С                 |
| 0 0110 11rr rrrr          | 06rr | RLC R    | $ \begin{array}{l} R(n) \rightarrow R(n+1), \\ R(7) \rightarrow C,  C \rightarrow R(0) \end{array} $                           | С                 |
| 0 0111 00rr rrrr          | 07rr | SWAPA R  | $R(0-3) \rightarrow A(4-7),$<br>$R(4-7) \rightarrow A(0-3)$                                                                    | None              |
| 0 0111 01rr rrrr          | 07rr | SWAP R   | $R(0-3) \leftrightarrow R(4-7)$                                                                                                | None              |
| 0 0111 10rr rrrr          | 07rr | JZA R    | R+1 $\rightarrow$ A, skip if zero                                                                                              | None              |
| 0 0111 11rr rrrr          | 07rr | JZ R     | $R+1 \rightarrow R$ , skip if zero                                                                                             | None              |
| 0 100b bbrr rrrr          | 0xxx | BC R,b   | $0 \rightarrow R(b)$                                                                                                           | None <sup>2</sup> |
| 0 101b bbrr rrrr          | 0xxx | BS R,b   | $1 \rightarrow R(b)$                                                                                                           | None <sup>3</sup> |
| 0 110b bbrr rrrr          | 0xxx | JBC R,b  | if R(b)=0, skip                                                                                                                | None              |
| 0 111b bbrr rrrr          | 0xxx | JBS R,b  | if R(b)=1, skip                                                                                                                | None              |
| 1 00kk kkkk kkkk          | 1kkk | CALL k   | $PC+1 \rightarrow [SP],$<br>(Page, k) $\rightarrow PC$                                                                         | None              |
| 1 01kk kkkk kkkk          | 1kkk | JMP k    | $(Page,k)\toPC$                                                                                                                | None              |
| 1 1000 kkkk kkkk          | 18kk | MOV A,k  | $k \to A$                                                                                                                      | None              |
| 1 1001 kkkk kkkk          | 19kk | OR A,k   | $A \lor k \to A$                                                                                                               | Z                 |
| 1 1010 kkkk kkkk          | 1Akk | AND A,k  | A & $k \rightarrow A$                                                                                                          | Z                 |
| 1 1011 kkkk kkkk          | 1Bkk | XOR A,k  | $A \oplus k \to A$                                                                                                             | Z                 |
| 1 1100 kkkk kkkk          | 1Ckk | RETL k   | $k \rightarrow A$ ,<br>[Top of Stack] $\rightarrow PC$                                                                         | None              |
| 1 1101 kkkk kkkk          | 1Dkk | SUB A,k  | $k\text{-}A\toA$                                                                                                               | Z, C, DC          |
| 1 1111 kkkk kkkk          | 1Fkk | ADD A,k  | $k+A \rightarrow A$                                                                                                            | Z, C, DC          |
| 1 1110 1001 kkkk          | 1E9k | BANK k   | $K \rightarrow R4(7:6)$                                                                                                        | None              |
| 1 1110 1010 kkkk          | 1EAK | LCALL k  | Next instruction : k kkkk<br>kkkk kkkk<br>PC+1→[SP], k→PC4                                                                     | None              |
| 1 1110 1011 kkkk          | 1EBK | LJMP k   | Next instruction : k kkkk<br>kkkk kkkk<br>k→PC4                                                                                | None              |
| 1 1110 11rr rrrr          | 1Err | TBRD R   | If Bank 3 R6.7=0, machine<br>code (7:0) $\rightarrow$ R<br>Else machine code (12:8)<br>$\rightarrow$ R(4:0),<br>R(7:5)=(0,0,0) | None              |

2 <sup>2</sup> This instruction is not recommended for interrupt status register operation.
<sup>3</sup> This instruction cannot operate under interrupt status register.



# 7 Timing Diagrams





# 8 Absolute Maximum Ratings

#### ■ A96F902N

| Items                  |          | Rating |          |
|------------------------|----------|--------|----------|
| Temperature under bias | -40°C    | to     | 85°C     |
| Storage temperature    | -65°C    | to     | 150°C    |
| Working voltage        | 2.2      | to     | 5.5V     |
| Working frequency      | DC       | to     | 20MHz*   |
| Input voltage          | Vss-0.3V | to     | Vdd+0.5V |
| Output voltage         | Vss-0.3V | to     | Vdd+0.5V |

\*This parameter is theoretical value only and has not been tested.

## 9 DC Electrical Characteristic

| Symbol | Parameter                                         | Condition                   | Min.  | Tvp.             | Max.  | Unit |
|--------|---------------------------------------------------|-----------------------------|-------|------------------|-------|------|
|        | Crystal: VDD to 3V                                |                             | DC    | -                | 8     | MHz  |
|        | Crystal: VDD to 5V                                | Two cycles with two clocks  | DC    | -                | 20    | MHz  |
| Fxt    | ERC: VDD to 5V                                    | R: 5.1KΩ, C: 100 pF         | F±30% | 830              | F±30% | kHz  |
|        | IRC: VDD to 5 V                                   | 4 MHz, 16 MHz, 8 MHz, 1 MHz | F±30% | F                | F±30% | Hz   |
| IIL    | Input Leakage Current for input pins              | VIN = VDD, VSS              | -     | -                | ±1    | μA   |
| VIHRC  | Input High Threshold Voltage<br>(Schmitt Trigger) | OSCI in RC mode             | 3.9   | 4                | 4.1   | V    |
| IERC1  | Sink current                                      | VI from low to high , VI=5V | 21    | 22               | 23    | mA   |
| VILRC  | Input Low Threshold Voltage<br>(Schmitt Trigger)  | OSCI in RC mode             | 1.7   | 1.8              | 1.9   | V    |
| IERC2  | Sink current                                      | VI from high to low , VI=2V | 16    | 17               | 18    | mA   |
| IIL    | Input Leakage Current for input pins              | VIN = VDD, VSS              | -1    | 0                | 1     | μA   |
| VIH1   | Input High Voltage (Schmitt trigge)               | Ports 5, 6, 7, 8            | -     | 0.7VDD<br>(2.8V) | -     | V    |
| VIL1   | Input Low Voltage (Schmitt trigger)               | Ports 5, 6, 7, 8            | -     | 0.3VDD<br>(2.2V) | -     | V    |
| VIHT1  | Input High Threshold Voltage<br>(Schmitt Trigger) | /RESET                      | -     | 0.7VDD           | -     | V    |
| VILT1  | Input Low Threshold Voltage (Schmitt trigger)     | /RESET                      | -     | 0.3VDD           | -     | V    |
| VIHT2  | Input High Threshold Voltage<br>(Schmitt Trigger) | TCC, INT                    | -     | 0.7VDD           | -     | V    |
| VILT2  | Input Low Threshold Voltage<br>(Schmitt Trigger)  | TCC, INT                    | -     | 0.3VDD           | -     | V    |
| VIHX1  | Clock Input High Voltage                          | OSCI in crystal mode        | 2.9   | 3.0              | 3.1   | V    |
| VILX1  | Clock Input Low Voltage                           | OSCI in crystal mode        | 1.7   | 1.8              | 1.9   | V    |

#### ■ Ta=25°C, VDD=5.0V±5%, VSS=0V



| (Contiuation) |
|---------------|
|---------------|

| Symbol | Parameter                                 | Condition                                                                                  | Min. | Тур. | Max. | Unit |
|--------|-------------------------------------------|--------------------------------------------------------------------------------------------|------|------|------|------|
| IOH1   | Output High Voltage<br>(Ports 5, 6, 7, 8) | VOH = 0.9VDD                                                                               | -3   | -    | -    | mA   |
| IOL1   | Output Low Voltage<br>(Ports 5, 7, 8)     | VOL = 0.1VDD                                                                               | 14   | -    | -    | mA   |
| IOL2   | Output Low Voltage (Port 6)               | VOL = 0.1VDD                                                                               | 14   | -    | -    | mA   |
| IPH    | Pull-high current                         | Pull-high active, input pin at VSS                                                         | -    | -    | -80  | μΑ   |
| IPL    | Pull-low current                          | Pull-low active, input pin at Vdd                                                          | -    | -    | 30   | μΑ   |
| ISB1   | Power down current                        | All input and I/O pins at VDD, output pin floating, WDT disabled                           | -    | -    | 2    | μΑ   |
| ISB2   | Power down current                        | All input and I/O pins at VDD, output pin floating, WDT enabled                            | -    | -    | 5    | μA   |
| ICC1   | Operating supply current at two clocks    | /RESET= 'High', Fosc=32kHz<br>(Crystal type), output pin floating,<br>WDT disabled         | -    | 43   | -    | μΑ   |
| ICC2   | Operating supply current at two clocks    | /RESET= 'High', Fosc=32kHz<br>(Crystal type), output pin floating,<br>WDT enabled          | -    | 43   | -    | μΑ   |
| ICC3   | Operating supply current at two clocks    | /RESET= 'High', Fosc=4 MHz<br>(Crystal type), output pin floating,<br>WDT enabled          | -    | -    | 1    | mA   |
| ICC4   | Operating supply current at two clocks    | /RESET= 'High', Fosc=10 MHz<br>(Crystal type), output pin floating,<br>WDT enabled         | -    | -    | 2.8  | mA   |
| ICC5   | Operating supply current at two clocks    | /RESET= 'High', Fosc=1MHz (IRC<br>type), Voltage = 3V, output pin<br>floating, WDT enabled | -    | 180  | -    | μA   |

#### NOTE

- The above parameters are theoretical values only and have not been tested or verified.
- Data under the "**Min.**", "**Typ.**", & "**Max.**" (Minimum, Typical, and Maximum) columns are based on hypothetical results at 25°C. These data are for design reference only.

### 9.1 Data EEPROM Electrical Characteristics

| Symbol | Parameter              | Condition                                              | Min. | Тур. | Max. | Unit   |
|--------|------------------------|--------------------------------------------------------|------|------|------|--------|
| Tprog  | Erase/Write cycle time |                                                        | -    | 4.5  | -    | ms     |
| Treten | Data Retention         | $V00 = 2.4 V \sim 5.5 V$<br>Temperature = -40°C ~ 85°C | -    | 10   | -    | Years  |
| Tendu  | Endurance time         |                                                        | -    | 100K | -    | Cycles |

## 9.2 Program Flash Memory Electrical Characteristics

| Symbol | Parameter              | Condition                                | Min. | Тур. | Max. | Unit   |
|--------|------------------------|------------------------------------------|------|------|------|--------|
| Tprog  | Erase/Write cycle time |                                          | -    | 4    | -    | ms     |
| Treten | Data Retention         | V00 = 5.0V<br>Temperature = -40°C ~ 85°C | -    | 10   | -    | Years  |
| Tendu  | Endurance time         |                                          | -    | 100K | -    | Cycles |



## 9.3 A/D Converter Characteristics

#### ■ Vdd=2.5V to 5.5V, Vss=0V, Ta=25°C

| Symbol | Parameter                                      | Condition                          | Min. | Тур.  | Max.   | Unit |
|--------|------------------------------------------------|------------------------------------|------|-------|--------|------|
| VAREF  | Analog reference voltage                       | VAREF-VASS= 2.5V to 5.5V           | 2.5  | -     | Vdd    | V    |
| VASS   | -                                              | _                                  | -    | Vss   | -      | V    |
| VAI    | Analog input voltage                           | _                                  | VASS | -     | VAREF  | V    |
|        | lvdd                                           | VAREF = Vdd                        | 1150 | 1300  | 1450   | μA   |
| IAN    | lvref                                          | _                                  | -10  | 0     | 10     | μA   |
| 1410   | lvdd                                           | VAREF = VREF                       | 700  | 800   | 900    | μA   |
| IAIZ   | lvref                                          | _                                  | 450  | 500   | 550    | μA   |
| RN     | Resolution                                     | VAREF=Vdd                          | 8    | 9     | -      | Bits |
| LN     | Linearity error                                | VAREF=Vdd                          | 0    | ±2    | +/-4   | LSB  |
| DNL    | Differential nonlinear error                   | VAREF=Vdd                          | 0    | ± 0.5 | +/-0.9 | LSB  |
| FSE    | Full scale error                               | VAREF=Vdd                          | ± 0  | ± 1   | ±2     | LSB  |
| OE     | Offset error                                   | VAREF=Vdd                          | ± 0  | ± 1   | ±2     | LSB  |
| ZAI    | Recommended impedance of analog voltage source | VAREF=Vdd                          | 0    | 8     | 10     | KΩ   |
| TAD1   | A/D clock period                               | VAREF=Vdd=2.5~5.5V<br>Ta= -40~85°C | 4    | -     | -      | μs   |
| TAD2   | A/D clock period                               | VAREF=Vdd=3~5.5V<br>Ta= -40~85°C   | 1    | -     | -      | μs   |
| TCN    | A/D conversion time                            | VAREF=Vdd                          | 14   | -     | 14     | TAD  |
| PSR    | Power supply rejection                         | Vdd=Vdd-10% to Vdd+10%             | ± 0  | -     | ±2     | LSB  |

#### NOTE

- These parameters are hypothetical (not tested) and are provided for design reference use only.
- There is no current consumption when ADC is off other than minor leakage current.
- AD conversion result will not decrease when an increase of input voltage and no missing code will result.
- These parameters are subject to change without further notice.



### 9.4 Comparator Characteristics

#### ■ Vdd=2.5V, Vss=0V, Ta=25°C

| VOS  | Input offset voltage             | $RL = 5.1K^{1}$                                                            | -   | -   | 5   | mV |
|------|----------------------------------|----------------------------------------------------------------------------|-----|-----|-----|----|
| Vcm  | Input common-mode voltages range | _                                                                          | GND | _   | VDD | V  |
| ICO  | Supply current of Comparator     | —                                                                          | I   | 200 | I   | uA |
| TRS  | Response time                    | Vin(-)=2.5V, Vdd=5V, CL=15p<br>(comparator output load),<br>overdrive=30mV | -   | 0.7 |     | us |
| TLRS | Large signal response time       | Vin(-)=2.5V, Vdd=5V, CL=15p<br>(comparator output load),                   | Ι   | 300 | Ι   | ns |
| VS   | Operating range                  | -                                                                          | 2.5 | -   | 5.5 | V  |

The output voltage is in the unit gain circuitry and over the full input common-mode range.

<sup>2</sup> The input common-mode voltage or any of the the input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VDD.

The response time specified is a 100mV input step with 30mV overdrive.

## **10 AC Electrical Characteristics**

| -40 ≤ Ta ≤ 85°C | , VDD=5V, VSS=0V |
|-----------------|------------------|
|                 |                  |

| Symbol | Parameter                            | Conditions   | Min          | Тур  | Max  | Unit |
|--------|--------------------------------------|--------------|--------------|------|------|------|
| Dclk   | Input CLK duty cycle                 | _            | 45           | 50   | 55   | %    |
| Tins   | Instruction cycle time<br>(CLKS="0") | Crystal type | 100          | -    | DC   | ns   |
|        |                                      | RC type      | 500          | -    | DC   | ns   |
| Ttcc   | TCC input period                     | _            | (Tins+20)/N* | -    | -    | ns   |
| Tdrh   | Device reset hold time               | -            | 11.8         | 16.8 | 21.8 | ms   |
| Trst   | /RESET pulse width                   | Ta = 25°C    | 2000         | -    | -    | ns   |
| Twdt   | Watchdog timer period                | Ta = 25°C    | 11.8         | 16.8 | 21.8 | ms   |
| Tset   | Input pin setup time                 | -            | -            | 0    | I    | ns   |
| Thold  | Input pin hold time                  | -            | _            | 20   | -    | ns   |
| Tdelay | Output pin delay time                | Cload=20pF   | _            | 50   | _    | ns   |

\*N: Selected prescaler ratio

#### NOTE

- The above parameters are theoretical values only and have not been tested or verified.
- Data under the "**Min.**", "**Typ.**", & "**Max.**" (Minimum, Typical, and Maximum) columns are based on hypothetical results at 25°C. These data are for design reference only.



### **10.1 Device Characteristics**

The following graphs were derived based on a limited number of samples and are shown here for reference only. The device characteristics illustrated herein are not guaranteed for its accuracy. In some graphs, the data may be out of the specified warranted operating range.



Figure 10-1 VIH/VIL vs. VDD (85°C)



Figure 10-2 VIH/VIL vs. VDD (25°C)





Figure 10-3 VIH/VIL vs. VDD (-40°C)



Figure 10-4 VIH of RESET Pin vs. VDD





Figure 10-5 VIL of RESET Pin vs. VDD



Figure 10-6 VOH vs. IOH, VDD=5V





Figure 10-7 VOH vs. IOH, VDD=3V



Figure 10-8 VOL vs. IOL, VDD=5V





Figure 10-9 VOL vs. IOL, VDD=3V



Figure 10-10 VOL of P6 vs. IOL, VDD=5V





Figure 10-11 VOL of P6 vs. IOL, VDD=3V



Figure 10-12 IPH of Port 6 & Port 7 vs. Temperature, VDD=3V & 5V





Figure 10-13 IPL of Ports 5 & 6 vs. Temperature, VDD=3V & 5V



Figure 10-14 ICC1 and ICC2 vs. Temperature, VDD=5V





Figure 10-15 ICC1 and ICC2 vs. Temperature, VDD=3V



Figure 10-16 ICC3 and ICC4 vs. Temperature, VDD=5V





Figure 10-17 ICC3 and ICC4 vs. Temperature, VDD=3V



Figure 10-18 ICC5 vs. Temperature, VDD=5V





Figure 10-19 ICC5 vs. Temperature, VDD=3V



Figure 10-20 ISB1 and ISB2 vs. Temperature, VDD=5V





Figure 10-21 ISB1 and ISB2 vs. Temperature, VDD=3V



Figure 10-22 Power Consumption in HXT Mode (4MHz)





Figure 10-23 Power Consumption in LXT Mode (32765Hz)



Figure 10-24 P6 Wake-up Time when Sleep to Normal, Crystal mode (Sub. Freq.=16kHz, 4 MHz)





Figure 10-25 P6 Wake-up Time when Sleep to Normal, IRC mode (Sub. Freq.=16kHz, 4 MHz)



Figure 10-26 P6 Wake-up Time when Idle to Normal, Crystal mode (Sub. Freq.=16kHz, 4 MHz)





Figure 10-27 P6 Wake-up Time when Idle to Normal, IRC mode (Sub. Freq.=16kHz, 4 MHz)



Figure 10-28 WDT Timer Time Out in Normal, Crystal Mode (Sub. Freq.=16kHz, 4 MHz)





Figure 10-29 WDT Timer Time Out in Normal, IRC Mode (Sub. Freq.=16kHz, 4 MHz)



Figure 10-30 WDT Timer Time Out when Sleep to Normal, Crystal Mode (4MHz)





Figure 10-31 WDT Timer Time Out when Sleep to Normal, IRC Mode (4MHz)



Figure 10-32 WDT Timer Time Out when Idle to Normal, Crystal Mode (4MHz)





Figure 10-33 WDT Timer Time Out when Idle to Normal, IRC Mode (4MHz)



Figure 10-34 Power on Reset Time in Normal, Crystal Mode (Sub. Freq.=16kHz, 4 MHz)





Figure 10-35 Power on Reset Time in Normal, IRC Mode (Sub. Freq.=16kHz, 4 MHz)



Figure 10-36 IRC OSC Freq, vs. Temp. (4MHz)





Figure 10-37 IRC OSC Freq, vs. Temp. (16MHz)



Figure 10-38 IRC OSC Freq, vs. Temp. (8MHz)





Figure 10-39 IRC OSC Freq, vs. Temp. (1MHz)



Figure 10-40 ERC OSC Frequency vs. Temp (CEXT=100pf, REXT=5.1k)





Figure 10-41 LVR Level vs Temperature



Figure 10-42 Typical & Maximum IAI1 and IAI2 vs Temperature





Figure 10-43 Typical & Maximum ICO3 vs Temperature



Figure 10-44 Comparator3 of Offset voltage vs Temperature





## APPENDIX

## A Package Type

| Flash MCU    | Package Type | Pin Count | Package Size |
|--------------|--------------|-----------|--------------|
| A96F902ND20  | PDIP         | 20        | 300 mil      |
| A96F902NSO20 | SOP          | 20        | 300 mil      |
| A96F902ND18  | PDIP         | 18        | 300 mil      |
| A96F902NSO18 | SOP          | 18        | 300 mil      |
| A96F902ND16  | PDIP         | 16        | 300 mil      |
| A96F902NSO16 | SOP          | 16        | 300 mil      |

These are Green products which do not contain hazardous substances and comply with the third edition of Sony SS-00259 standard.

Pb contents should be less than 100ppm and complies with Sony specifications.

| Part No.                                 | A96F902NS/J |  |  |
|------------------------------------------|-------------|--|--|
| Electroplate Type                        | Pure Tin    |  |  |
| Ingredient (%)                           | Sn:100%     |  |  |
| Melting Point (°C)                       | 232°C       |  |  |
| Electrical Resistivity ( $\mu\Omega$ cm) | 11.4        |  |  |
| Hardness (hv)                            | 8~10        |  |  |
| Elongation (%)                           | >50%        |  |  |



## **B** Package Information

## B.1 A96F902ND16 300mil



Figure B-1 A96F902N 16-Pin PDIP Package Type







Figure B-2 A96F902N 16-Pin SOP Package Type



## B.3 A96F902ND18 300mil



## B.4 A96F902NSO18 300mil



Figure B-4 A96F902N 18-Pin SOP Package Typ



## B.5 A96F902ND20 300mil

Figure B-5 A96F902N 20-Pin PDIP Package Type







Figure B-6 A96F902N 20-Pin SOP Package Type



# C Quality Assurance and Reliability

| Test Category                                                                       | Test Conditions                                                                                                                                                      | Remarks                                 |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Solder temperature=245±5°C, for 5 seconds up to the stopper using a rosin-type flux |                                                                                                                                                                      | _                                       |  |
|                                                                                     | Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles                                                                                                                 |                                         |  |
|                                                                                     | Step 2: Bake at 125°C, TD (endurance)=24 hrs                                                                                                                         |                                         |  |
|                                                                                     | Step 3: Soak at 30°C/60% , TD (endurance)=192 hrs                                                                                                                    |                                         |  |
| Pre-Condition                                                                       | Step 4: IR flow 3 cycles<br>(Pkg thickness $\geq$ 2.5mm or<br>Pkg volume $\geq$ 350mm <sup>3</sup> 225 $\pm$ 5°C)For SMD IC (such<br>SOP, QFP, SOJ,<br>OP, QFP, SOJ, |                                         |  |
|                                                                                     | Pkg volume $\leq$ 350mm <sup>3</sup> 240±5°C)                                                                                                                        |                                         |  |
| Temperature Cycle Test                                                              | -65°C (15mins)~150°C (15mins), 200 cycles                                                                                                                            | _                                       |  |
| Pressure Cooker Test                                                                | TA =121°C, RH=100%, pressure=2 atm,<br>TD (endurance)= 96 hrs                                                                                                        | _                                       |  |
| High Temperature /<br>High Humidity Test                                            | TA=85°C , RH=85% $^{\rm ,}$ TD (endurance) = 168 , 500 hrs                                                                                                           | _                                       |  |
| High-Temperature<br>Storage Life                                                    | igh-Temperature<br>torage Life TA=150°C, TD (endurance) = 500, 1000 hrs                                                                                              |                                         |  |
| High-Temperature<br>Operating Life                                                  | TA=125°C, VCC = Max. operating voltage,<br>TD (endurance) = 168, 500, 1000 hrs                                                                                       | _                                       |  |
| Latch-up                                                                            | TA=25°C, VCC = Max. operating voltage, 150mA/20V                                                                                                                     |                                         |  |
|                                                                                     |                                                                                                                                                                      | IP_ND,OP_ND,IO_ND                       |  |
| ESD (HBM)                                                                           | I A=25°C, ≥   ± 3KV                                                                                                                                                  | IP_NS,OP_NS,IO_NS                       |  |
|                                                                                     |                                                                                                                                                                      | IP_PD,OP_PD,IO_PD,<br>IP_PS.OP_PS.IO_PS |  |
| ESD (MM)                                                                            | $TA=25^{\circ}C,\geq \ \mid \pm 300V \mid$                                                                                                                           | VDD-VSS(+),VDD_VSS<br>(-) mode          |  |

## C.1 Address Trap Detect

An Address Trap Detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.