RoHS

STW8A32E-S1(IPLO) – Mid-Power LED

Mid-Power LED - 2835 Series

STW8A32E-S1(IPLO)

Product Brief

Description

- This White Colored surface-mount LED comes in standard package dimension. Package Size: 3.5x2.8x0.7mm
- It has a substrate made up of a molded • plastic reflector sitting on top of a lead frame.
- The die is attached within the reflector . cavity and the cavity is encapsulated by silicone.
- The package design coupled with careful selection of component materials allow these products to perform with high reliability.

Features and Benefits

- Market Standard 3528 Package Size ٠
- High Color Quality, CRI Min. 80
- **RoHS** compliant

Key Applications

- Interior lighting
- General lighting
- Indoor and outdoor displays
- Architectural / Decorative lighting

Table 1. Product Selection Table

Part Number		ССТ		
Part Number	Color	Min.	Тур.	Max.
STW8A32E-S1(IPLO)	Cool White	4650K	5600K	7000K
STW8A32E-S1(IPLO)	Neutral White	3700K	4000K	4200K
STW8A32E-S1(IPLO)	Warm White	2580K	3000K	3700K

Table of Contents

Index							
•	Product Brief	1					
•	Table of Contents	2					
•	Performance Characteristics	3					
•	Characteristics Graph	5					
•	Color Bin Structure	8					
•	Mechanical Dimensions	10					
•	Emitter Tape & Reel Packaging	12					
•	Product Nomenclature	13					
•	Precaution For Use	14					

Performance Characteristics

SEOUL

Part Number	ССТ (К) ^[1]	RANK		us Flux ^[3] (Im)	CRI R₄
	Тур.		Min	Мах	Min.
	6500	L135/L140	135	145	80
	6300	L135/L140	135	145	80
	6000	L135/L140	135	145	80
	5700	L135/L140	135	145	80
STW8A32E-S1 (IPLO)	5000	L135/L140	135	145	80
	4000	L135/L140	135	145	80
	3500	L125/L130	125	135	80
	3000	L130/L135	125	135	80
	2700	L120/L125	120	130	80

Table 2. Product Selection Guide, $I_F = 100mA$, $T_j = 25^{\circ}C$, RH30%

Notes :

- (1) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.
- (2) Seoul Semiconductor maintains a tolerance of \pm 7% on Flux and power measurements. The luminous Flux was measured at the peak of the spatial pattern which may not be aligned with the mechanical axis of the LED package.

SEOUL

STW8A32E-S1(IPLO) - Mid-Power LED

Performance Characteristics

Table 3. Characteristics, $I_F=100$ mA, $T_j=25$ °C, RH30%

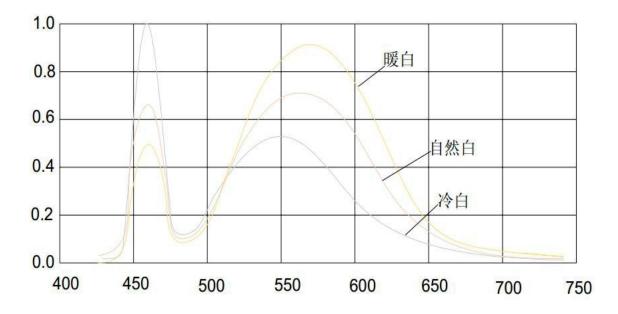
Parameter	Cumhal		Value		Unit
Farameter	Symbol	Symbol Min.		Max.	Unit
Forward Current	۱ _۶	-	100	-	mA
Forward Voltage	V _F	8.7	9.0	9.4	V
Luminous Flux ^[1] (6,500K) ^[2]	l _v	135	140	-	lm
CRI ^[3]	R _a	80	83	90	
Viewing Angle	20 _{1/2}	-	120	-	Deg.
Storage Temperature	T _{stg}	- 40	-	+ 85	°C
Thermal resistance (J to S) [4]	Rθ _{J-S}	-	25	-	°C/W
ESD Sensitivity(HBM)	-	Class 2 JESD22-A114-E			

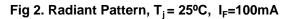
Table 4. Absolute Maximum Ratings

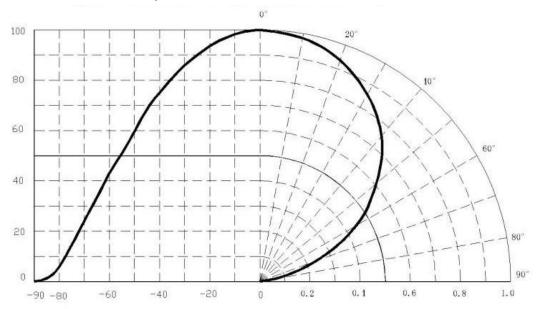
Parameter	Symbol	Value	Unit
Forward Current	I _F	150	mA
Power Dissipation	P _D	1.38	W
Junction Temperature	Τ _j	125	٥C
Operating Temperature	T _{opr}	-40 ~ + 85	٥C
Storage Temperature	T _{stg}	-40 ~ + 100	°C

Notes :

- (1) Seoul Semiconductor maintains a tolerance of $\pm 10\%$ on Flux and power measurements.
- (2) Correlated Color Temperature is derived from the CIE 1931 Chromaticity diagram.

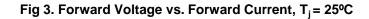

Color coordinate : $\pm 0.01,$ CCT $\pm 5\%$ tolerance.


- (3) Tolerance is ± 3.0 on CRI , ± 0.3 on VF measurements.
- (4) Thermal resistance is junction to Solder.
- (5) I_{FP} conditions with pulse width \leq 10ms and duty cycle \leq 10%
- (6) The products are sensitive to static electricity and must be carefully taken when handling products
- Calculated performance values are for reference only.
- All measurements were made under the standardized environment of Seoul Semiconductor.


STW8A32E-S1(IPLO) - Mid-Power LED

Characteristics Graph

Fig 1. Color Spectrum, $T_j = 25^{\circ}C$, $I_F = 100 \text{mA}$



STW8A32E-S1(IPLO) - Mid-Power LED

Characteristics Graph

SEOUL

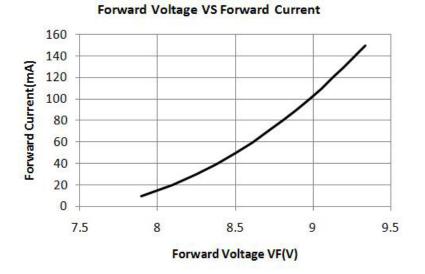
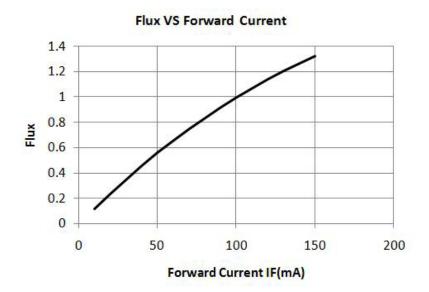



Fig 4. Forward Current vs. Relative Luminous Flux, T_i = 25°C

STW8A32E-S1(IPLO) - Mid-Power LED

Color Bin Structure

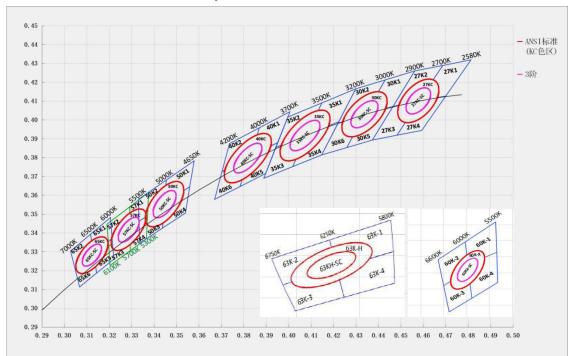
SEOUL

Table 5. Bin Code description, $T_j=25^{\circ}C$, $I_F=100mA$

	Lu	minous Flux	k (lm)	Color	Typical Forward Voltage (V)		
Part Number	Bin Code	Min.	Max.	Chromaticity Coordinate	Bin Code	Min.	Max.
	L120	120	125		1	8.7	9.1
	L125	125	130		2	9.1	9.4
STW8A32E-S1 (IPLO)	L130	130	135	Refer to Page. 8			
(==)	L135	135	140	1 490.0			
	L140	140	145				

*Notes :

(1) Calculated performance values are for reference only.


• All measurements were made under the standardized environment of Seoul Semiconductor. In order to ensure availability, single color rank will not be orderable.

STW8A32E-S1(IPLO) - Mid-Power LED

Color Bin Structure

SEOUL

CIE Chromaticity Diagram, $T_j=25^{\circ}C$, $I_F=100mA$

	Х	0.3123		Х	0.3156		Х	0.3205
	Y	0.3282		Y	0.3405		Y	0.3418
65KC-SC/	а	0.00223	63KH-SC/	а	0.0023	60KX-SC/	а	0.0026
65KC	b	0.00095	63K-H	b	0.00095	60K-X	b	0.0011
	θ	58. 38333]	θ	65		θ	65
	SDCM	3/5		SDCM	3/5		SDCM	3/5
	Х	0.3287		Х	0.3447		Х	0.3818
	Y	0.3417		Y	0.3553		Y	0.3797
57KC-SC/	а	0.002486	50KC-SC/	a	0.00274	40KC-SC/	a	0.00313
57KC	b	0.001066	50KC	b	0.00118	40KC	b	0.00134
	θ	59.09		θ	59.62		θ	54
	SDCM	3/5	1	SDCM	3/5		SDCM	3/5
	Х	0.4073		Х	0. 4338		Х	0.4578
	Y	0.3917		Y	0. 403		Y	0.4101
35KC-SC/	а	0.00317	30KC-SC/	a	0.00278	27KC-SC/	а	0.00258
35KC	b	0.00139	30KC	b	0.00136	27KC	b	0.00137
	θ	52.96667		θ	53.16667		θ	57. 28333
	SDCM	3/5		SDCM	3/5		SDCM	3/5

*Notes :

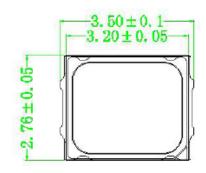
(1) Energy Star binning applied to all 2600~7000K.

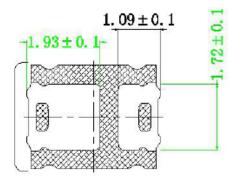
(2) Measurement Uncertainty of the Color Coordinates : \pm 0.01

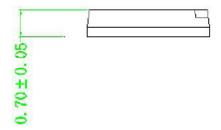
Color Bin Structure

SEOUL

CIE Chromaticity Diagram, $T_i=25$ °C, $I_F=100$ mA


色区	Х	Y	色区	X	Y	色区	Х	Y	色区	Х	Y
	0. 3206	0.3482		0. 3117	0.3393		0. 3221	0. 3261		0.3131	0. 329
	0.3117	0.3393		0.3028	0.3304		0.3144	0.3187		0.3048	0.3209
65K1	0.3131	0.329	65K2	0.3048	0.3209	65K5	0.3131	0.329	65K6	0.3068	0.3113
	0.3213	0.3371		0.3131	0.329		0.3213	0.3371		0.3144	0.3187
	0.0210	0.0011		0.0101	0.010		0.0110	0.0011		0.0111	0.0101
色区	Х	Y	色区	X	Y	色区	Х	Y	色区	Х	Y
	0.3164	0.3389		0.3164	0.3389	1	0.3164	0.3389		0.3164	0.3389
	0.3255	0.3469	1	0.3153	0.3524		0.3078	0.3312		0.3176	0.3253
63K-1	0.3251	0.3618	63K-2	0.306	0.3435	63K-3	0.3098	0.3189	63K-4	0.3257	0.332
	0.3153	0.3524		0.3078	0.3312		0.3176	0.3253		0.3255	0.3469
色区	Х	Y	色区	Х	Y	色区	Х	Y	色区	Х	Y
	0.3208	0.3417		0.3208	0.3417		0.3208	0.3417		0.3208	0.3417
COV 1	0.3332	0.3528	COV 9	0.3194	0.3592	COV 2	0.31	0.3319	COV 4	0.3223	0.3241
60K-1	0.3327	0.3717	60K-2	0.3076	0.3482	60K-3	0.3124	0.3156	60K-4	0.3336	0.3339
	0.3194	0.3592		0.31	0.3319		0.3223	0.3241		0.3332	0.3528
色区	X	Y	色区	X	Y	色区	Х	Y	色区	Х	Y
	0.3376	0.3616		0.319	0.3446		0.3204	0.3228		0.3293	0.3419
57K1	0.3292	0.3539	57K2	0.3198	0.3329	57K3	0.3294	0.3306	57K4	0.3294	0.3306
omi	0.3293	0.3419	01112	0.3293	0.3419	01110	0.3293	0.3419	OTHI	0.3366	0.3369
	0.3371	0.3493		0.3292	0.3539		0.3198	0.3329		0.3371	0.3493
14 m											
色区	X	Y	色区	X	Y	色区	X	Y	色区	X	Y
	0.3455	0.3681		0.3333	0.3462		0.3438	0.3426	0.3559	0.3645	
50K1	0.3579	0.3783	50K2 0. 3331		0.3579	50K3	0.3336	0.3345	50K4	0.354	0.3506
	0.3559	0.3645		0.3455	0.3681		0.3333	0.3462		0.3438	0.3426
	0.3446	0.3553		0.3446	0.3553		0.3446	0.3553		0.3446	0.3553
色区	X	Y	色区	X	Y	色区	X	Y	色区	X	Y
	0.3869	0. 3958		0.3869	0.3958		0.3952	0.388		0.3828	0. 3803
	0.4006	0.4044		0.3736	0.3874		0.3898	0.3716		0.3703	0.3726
40K1	0. 3952	0.388	40K2	0.3703	0.3726	40K5	0.3783	0.3646	40K6	0.367	0.3578
	0.3828	0.3803		0.3828	0.3803		0.3828	0.3803		0.3783	0.3646
色区	Х	Y	色区	Х	Y	色区	Х	Y	色区	Х	Y
	0.4083	0.3921		0.3942	0.3853		0.3889	0.369		0.4018	0.3752
0.511	0.4148	0.409	0.510	0.3996	0.4015	0.510	0.3942	0.3853	OFWA	0.4083	0.3921
35K1	0.4299	0.4156	35K2	0.4148	0.409	35K3	0.4083	0.3921	35K4	0.4223	0.399
	0.4223	0.399		0.4083	0.3921		0.4018	0.3752		0.4147	0.3814
色区	Х	Y	色区	Х	Y	色区	Х	Y	色区	Х	Y
	0.4342	0.4027		0.4221	0.3984		0.4342	0.4027		0.4221	0.3984
20771	0.443	0.4212	2070	0.4299	0.4165	2075	0.4259	0.3853	2076	0.4147	0.3814
30K1	0.4562	0.426	30K2	0.443	0.4212	30K5	0.4373	0.3893	30K6	0.4259	0.3853
	0.4465	0.4071		0.4342	0.4027		0.4465	0.4071		0.4342	0.4027
色区	X	Y	色区	Х	Y	色区	Х	Y	色区	Х	Y
	0.4813	0.4319		0.4687	0.4289		0.4373	0.3893		0.47	0.4126
971/1	0.4687	0.4289	9779	0.4562	0.426	97729	0.4465	0.4071	9784	0.4582	0.4098
27K1	0.4582	0.4098	27K2	0.4465	0.4071	27K3	0.4582	0.4098	27K4	0.4483	0.3919
	0.47	0.4126		0.4582	0.4098		0.4483	0.3919		0.4593	0.3944

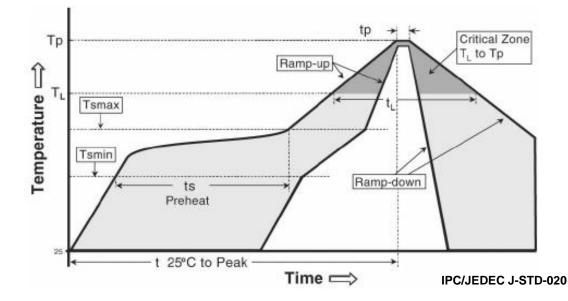



Mechanical Dimensions

SEOUL

Mechanical Dimensions : Unit (mm)

Polarity


Notes :

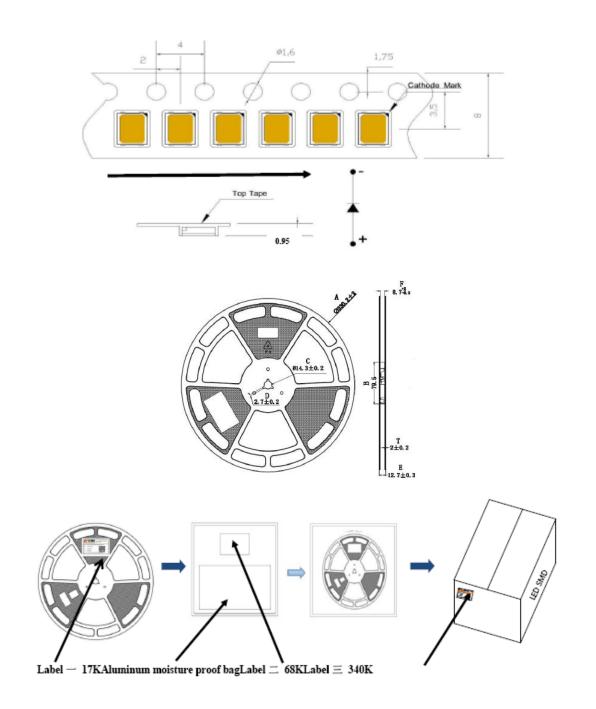
- (1) All dimensions are in millimeters.
- (2) Scale : none
- (3) Undefined tolerance is $\pm 0.2 \text{mm}$

SEOUL

STW8A32E-S1(IPLO) - Mid-Power LED

Reflow Soldering Characteristics

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate $(T_{s_max} \text{ to } T_p)$	3° C/second max.	3° C/second max.
$\label{eq:preheat} \begin{array}{l} \mbox{Preheat} \\ \mbox{- Temperature Min} \left(T_{s_min} \right) \\ \mbox{- Temperature Max} \left(T_{s_max} \right) \\ \mbox{- Time} \left(T_{s_min} \mbox{ to } T_{s_max} \right) \left(t_s \right) \end{array}$	100 °C 150 °C 60-120 seconds	150 ℃ 200 ℃ 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	183 °C 60-150 seconds	217 °C 60-150 seconds
Peak Temperature (T _p)	215 ℃	260 ℃
Time within 5°C of actual Peak Temperature (t _p)2	10-30 seconds	20-40 seconds
Ramp-down Rate	6 °C/second max.	6 °C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.


Caution :

- Reflow soldering is recommended not to be done more than two times In the case of more than 24 hours passed soldering after first, LEDs will be damaged.
- (2) Repairs should not be done after the LEDs have been soldered When repair is unavoidable, suitable tools must be used.
- (3) Die slug is to be soldered.
- (4) When soldering, do not put stress on the LEDs during heating.
- (5) After soldering, do not warp the circuit board.

STW8A32E-S1(IPLO) – Mid-Power LED

Emitter Tape & Reel Packaging

NOTES :

Empty component pockets are sealed with top cover tape; The maximum number of missing lamps is two; The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications. 17,000 pcs / Reel.

STW8A32E-S1(IPLO) – Mid-Power LED

Product Nomenclature

SEOUL

Table 6. Part Numbering System : $X_1X_2X_3X_4X_5X_6X_7X_8 - X_9X_{10}(X_{11}X_{12}X_{13}X_{14})$

Part Number Code	Description	Part Number	Value
X ₁	Company	S	KMS
X ₂	Top View LED series	Т	
X ₃ X ₄	Color Specification	W8	CRI 80
X ₅	Package series	А	A series
X ₆ X ₇	Characteristic code	32	
X ₈	Version	E	
X ₉ X ₁₀	Internal code	S1	
X ₁₁ X ₁₂ X ₁₃ X ₁₄	Internal code	IPLO	

SEOUL SEMICONDUCTOR

Precaution for Use

(1) Storage

To avoid the moisture penetration, we recommend store in a dry box with a desiccant.

The maximum storage temperature range is 40° C and a maximum humidity of RH90%.

(2) Use Precaution after Opening the Packaging

Use proper SMT techniques when the LED is to be soldered dipped as separation of the lens may affect the light output efficiency.

Pay attention to the following:

- a. Recommend conditions after opening the package
 - Sealing
 - Temperature : 30°C Humidity : less than RH60%
- b. If the package has been opened more than 4 week(MSL_2a) or the color of the desiccant changes, components should be dried for 10-24hr at $65\pm5^\circ$ C
- (3) Do not apply mechanical force or excess vibration during the cooling process to normal temperature after soldering.
- (4) Do not rapidly cool device after soldering.
- (5) Components should not be mounted on warped (non coplanar) portion of PCB.
- (6) Radioactive exposure is not considered for the products listed here in.
- (7) Gallium arsenide is used in some of the products listed in this publication.These products are dangerous if they are burned or shredded in the process of disposal.It is also dangerous to drink the liquid or inhale the gas generated by such products when chemically disposed of.
- (8) This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When washing is required, IPA (Isopropyl Alcohol) should be used.
- (9) When the LEDs are in operation the maximum current should be decided after measuring the package temperature.

STW8A32E-S1(IPLO) - Mid-Power LED

Precaution for Use

- (10) The appearance and specifications of the product may be modified for improvement without notice.
- (11) Long time exposure of sunlight or occasional UV exposure will cause lens discoloration.
- (12) VOCs (Volatile organic compounds) emitted from materials used in the construction of fixtures can penetrate silicone encapsulants of LEDs and discolor when exposed to heat and photonic energy. The result can be a significant loss of light output from the fixture. Knowledge of the properties of the materials selected to be used in the construction of fixtures can help prevent these issues.
- (13) Attaching LEDs, do not use adhesives that outgas organic vapor.
- (14) The driving circuit must be designed to allow forward voltage only when it is ON or OFF. If the reverse voltage is applied to LED, migration can be generated resulting in LED damage.
- (15) Similar to most Solid state devices;

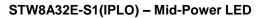
LEDs are sensitive to Electro-Static Discharge (ESD) and Electrical Over Stress (EOS). Below is a list of suggestions that Seoul Semiconductor purposes to minimize these effects.

a. ESD (Electro Static Discharge)

Electrostatic discharge (ESD) is the defined as the release of static electricity when two objects come into contact. While most ESD events are considered harmless, it can be an expensive problem in many industrial environments during production and storage. The damage from ESD to an LEDs may cause the product to demonstrate unusual characteristics such as:

- Increase in reverse leakage current lowered turn-on voltage
- Abnormal emissions from the LED at low current

The following recommendations are suggested to help minimize the potential for an ESD event. One or more recommended work area suggestions:


- Ionizing fan setup
- ESD table/shelf mat made of conductive materials
- ESD safe storage containers

One or more personnel suggestion options:

- Antistatic wrist-strap
- Antistatic material shoes
- Antistatic clothes

Environmental controls:

- Humidity control (ESD gets worse in a dry environment)

Precaution for Use

SEOUL

b. EOS (Electrical Over Stress)

Electrical Over-Stress (EOS) is defined as damage that may occur when an electronic device is subjected to a current or voltage that is beyond the maximum specification limits of the device. The effects from an EOS event can be noticed through product performance like:

- Changes to the performance of the LED package

(If the damage is around the bond pad area and since the package is completely encapsulated the package may turn on but flicker show severe performance degradation.)

- Changes to the light output of the luminaire from component failure
- Components on the board not operating at determined drive power

Failure of performance from entire fixture due to changes in circuit voltage and current across total circuit causing trickle down failures. It is impossible to predict the failure mode of every LED exposed to electrical overstress as the failure modes have been investigated to vary, but there are some common signs that will indicate an EOS event has occurred:

- Damaged may be noticed to the bond wires (appearing similar to a blown fuse)
- Damage to the bond pads located on the emission surface of the LED package
- (shadowing can be noticed around the bond pads while viewing through a microscope)
- Anomalies noticed in the encapsulation and phosphor around the bond wires.
- This damage usually appears due to the thermal stress produced during the EOS event.

c. To help minimize the damage from an EOS event Seoul Semiconductor recommends utilizing:

- A surge protection circuit
- An appropriately rated over voltage protection device
- A current limiting device