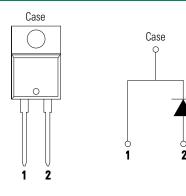


LSIC2SD065A16A 650 V, 16 A SiC Schottky Barrier Diode

*Image for reference only, for details refer to Dimensions-Packag.


Description

This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

Features

- AEC-Q101 qualified
- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability
- Extremely fast, temperature-independent switching behavior
- Dramatically reduced switching losses compared to Si bipolar diodes

Circuit Diagram TO-220-2L

Applications

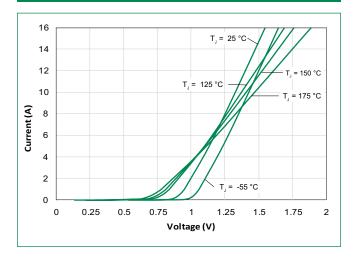
- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
- Uninterruptible power supplies
- Solar inverters
- Industrial motor drives
- EV charging stations

Environmental

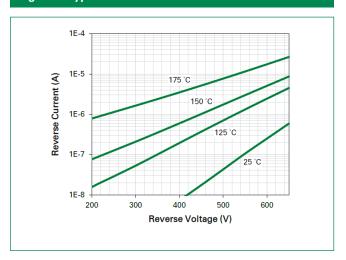
- Littelfuse "RoHS" logo = RoHS RoHS conform
- Littelfuse "HF" logo =**HF**Halogen Free
- Littelfuse "Pb-free" logoPb-free lead plating

Maximum Ratings

Characteristics	Symbol	Conditions	Value	Unit	
Repetitive Peak Reverse Voltage	V _{RRM}	-	650	V	
DC Blocking Voltage	V _R	T _J = 25 °C	650	V	
		T _c = 25 °C	38		
Continuous Forward Current	I _F	T _C = 135 °C	17.2	А	
		T _C = 140 °C	16		
Non-Repetitive Forward Surge Current	I _{FSM}	$T_{\rm C}$ = 25 °C, $T_{\rm P}$ = 10 ms, Half sine pulse	70	А	
Davier Dissination	D	T _C = 25 °C	125	١٨/	
Power Dissipation	P _{Tot}	T _C = 110 °C	54	W	
Operating Junction Temperature	T	-	-55 to 175	°C	
Storage Temperature	T _{STG}	-	-55 to 150	°C	
Soldering Temperature	T _{SOLD}	-	260	°C	



Electrical Characteristics (T₁ =25 °C unless otherwise specified)


Observatoristics Co.	Complete	O listana	Value			1124
Characteristics	Symbol	Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	$I_F = 16 \text{ A, T}_J = 25 ^{\circ}\text{C}$	-	1.5	1.8	V
		I _F = 16 A, T _J = 175 °C	-	1.85	-	
Reverse Current I _R		$V_R = 650 \text{V}$, $T_J = 25 ^{\circ}\text{C}$	-	<1	50	μΑ
	R	$V_{R} = 650 V, T_{J} = 175 ^{\circ}C$	-	55	-	
Total Capacitance	С	$V_R = 1 V$, $f = 1 MHz$	-	730	-	pF
		V _R = 200 V, f = 1 MHz	-	92	-	
		$V_R = 400 \text{V}, \text{f} = 1 \text{MHz}$	-	66	-	
Total Capacitive Charge	Q _c	$V_R = 400 \text{ V, } Q_c = \begin{cases} V_R \\ C(V) dV \end{cases}$	-	48	-	nC

Thermal Characteristics			
Characteristics	Symbol	Value	Unit
Thermal Resistance	R	1.2	°C/W

Figure 1: Typical Foward Characteristics

Figure 2: Typical Reverse Characteristics

Figure 3: Power Derating

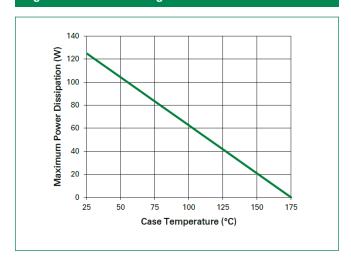


Figure 4: Current Derating

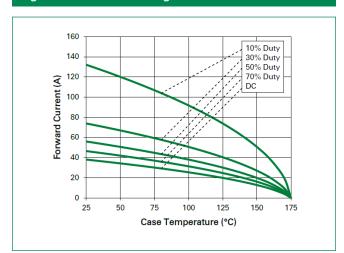


Figure 5: Capacitance vs. Reverse Voltage

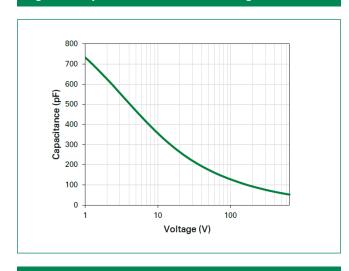


Figure 6: Capacitive Charge vs. Reverse Voltage

Figure 7: Stored Energy vs. Reverse Voltage

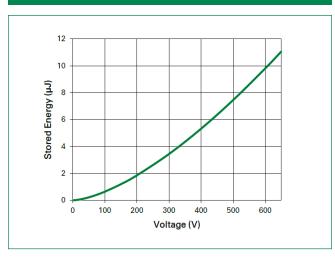
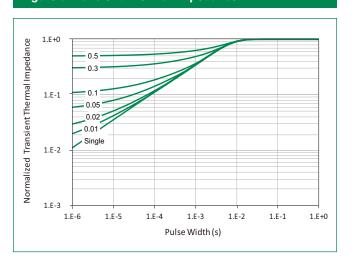
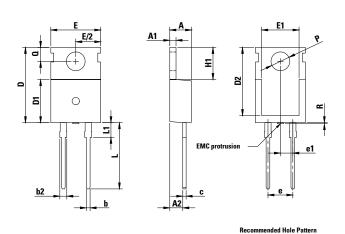
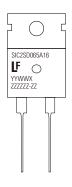




Figure 8: Transient Thermal Impedance

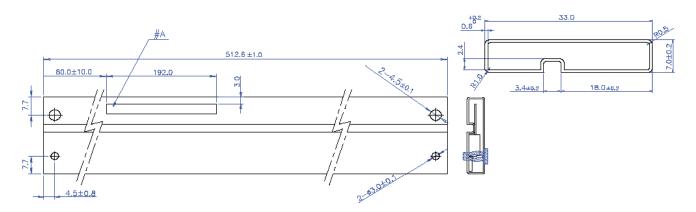


Dimensions-Package TO-220-2L

Symbol	Millimeters			
	Min	Nom	Max	
Α	4.30	4.45	4.70	
A1	1.14	1.27	1.40	
A2	2.20	-	2.74	
b	0.69	-	0.90	
b2	1.17	-	1.62	
С	0.36	-	0.60	
D	14.90	-	15.90	
D1	8.62	-	9.40	
D2	12.50	-	12.95	
E	9.70	10.18	10.36	
E1	7.57	7.61	8.30	
e1	-	2.54	-	
е	5.03	5.08	5.13	
H1	6.30	6.55	6.80	
L	12.88	13.50	14.00	
L1	2.39	-	3.25	
øΡ	3.50	3.84	3.96	
Q	2.65	-	3.05	
R	-	-	0.25	

Part Numbering and Marking System

SIC	= SiC Diode
2	= Gen2
SD	= Schottky Diode
065	= Voltage Rating (650 V)
Α	= TO-220 Package (2 Lead)
16	= Current Rating (16 A)
YY	= Year
WW	= Week
Χ	= Special Code
ZZZZZZ-Z	Z = Lot Number


1,93

Packing Options

Part Number	Marking	Packing Mode	D.O.M
LSIC2SD065A16A	SIC2SD065A16	Tube(50pcs)	1000

GEN2 SiC Schottky Diode LSIC2SD065A16A, 650V, 16A, TO-220-2L

Packing Specification (Tube for TO-220-2L)

[NOTE]

- 1. TUBE MATERIAL : PVC / PET (WITH ANTISTATIC COATING)
 - COLOR : TRANSPARENCY, RED, YELLO
 - MARKING #A : BLACK COLOR, LETTER STYLE : Arial
 - Tube Surface Resistance $:\!10^6\!\!\sim\!10^{11}\,\Omega\,/square$
 - ESD (Electro Static Discharge) : less than 100 [volts], 6 Months
 - CAMBAR : 1.5 MAX
- 2. PIN COLOR : GREEN (ONE PIN MUST BE INSERTED IN LEFT-SIDE OF "ANTISTATIC" AND ANOTHER PIN IS FREE.)