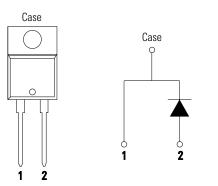
GEN2 SiC Schottky Diode LSIC2SD065A10A, 650V, 10A, TO-220-2L


LSIC2SD065A10A 650 V, 10 A SiC Schottky Barrier Diode

HF RoHS 🕅

Circuit Diagram TO-220-2L

Description

This series of silicon carbide (SiC) Schottky diodes has negligible reverse recovery current, high surge capability, and a maximum operating junction temperature of 175 °C. These diodes series are ideal for applications where improvements in efficiency, reliability, and thermal management are desired.

Features

- AEC-Q101 qualified
- Positive temperature coefficient for safe operation and ease of paralleling
- 175 °C maximum operating junction temperature
- Excellent surge capability
- Extremely fast, temperature-independent switching behavior
- Dramatically reduced switching losses compared to Si bipolar diodes

Industrial motor drives

EV charging stations

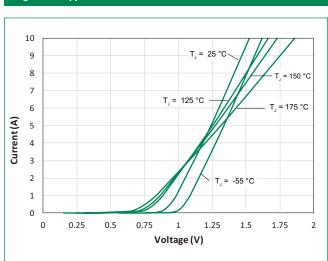
· Solar inverters

Applications

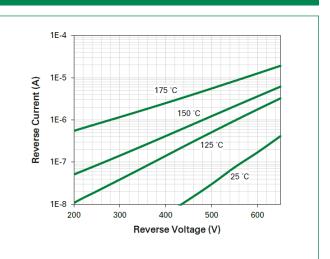
- Boost diodes in PFC or DC/DC stages
- Switch-mode power supplies
- Uninterruptible power supplies

Environmental

- Littelfuse "RoHS" logo = RoHS **RoHS** conform
- Littelfuse "HF" logo = Halogen Free
- (Pi) • Littelfuse "Pb-free" logo
 - = Pb-free lead plating

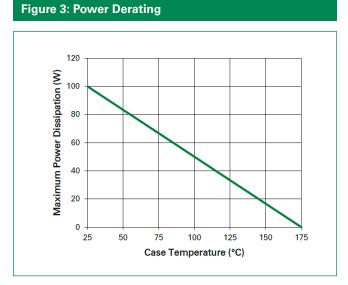

Maximum Ratings						
Characteristics	Symbol	Conditions	Value	Unit		
Repetitive Peak Reverse Voltage	V _{RRM}	-	650	V		
DC Blocking Voltage	V _R	$T_{J} = 25 \ ^{\circ}C$	650	V		
		$T_c = 25 \text{ °C}$	27	A		
Continuous Forward Current	l _F	T _c = 135 °C	12.5			
		$T_c = 147 \text{ °C}$	10			
Non-Repetitive Forward Surge Current	I _{FSM}	$T_c = 25 \text{ °C}, T_p = 10 \text{ ms}, \text{ Half sine pulse}$	48	А		
Device Dissignation	D	$T_c = 25 \text{ °C}$	100	W		
Power Dissipation	P _{Tot}	$T_c = 110 \text{ °C}$	43	vv		
Operating Junction Temperature	T	-	-55 to 175	°C		
Storage Temperature	T _{stg}	-	-55 to 150	°C		
Soldering Temperature	T _{SOLD}	-	260	°C		

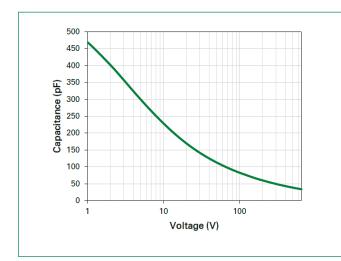
GEN2 SiC Schottky Diode LSIC2SD065A10A, 650V, 10A, TO-220-2L


Chavestevistics	Ormahad	O an distance		Value			
Characteristics	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Forward Voltage	N	I _F = 10 A, T _J = 25 °C	-	1.5	1.8	V	
	V _F	I _F = 10 A, T _J = 175 °C	-	1.85	-		
Reverse Current		$V_{_{ m R}}=650~V$, $T_{_{ m J}}=25~^{\circ}{ m C}$	-	<1	50		
	R	V _R = 650 V , T _J = 175 °C	-	25	-	μA	
Total Capacitance		$V_{R} = 1 V$, f = 1 MHz	-	470	-		
	С	V _R = 200 V, f = 1 MHz	-	60	-	pF	
		V _R = 400 V, f = 1 MHz	-	43	-		
Total Capacitive Charge	Q _c	$V_{R} = 400 \text{ V}, $	-	30	-	nC	

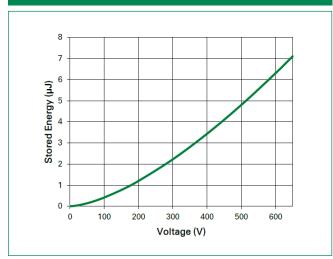
Thermal Characteristics						
Characteristics	Symbol	Value	Unit			
Thermal Resistance	R _{ejc}	1.5	°C/W			

Figure 1: Typical Foward Characteristics


Figure 2: Typical Reverse Characteristics


Littelfuse Power

GEN2 SiC Schottky Diode LSIC2SD065A10A, 650V, 10A, TO-220-2L


Figure 4: Current Derating

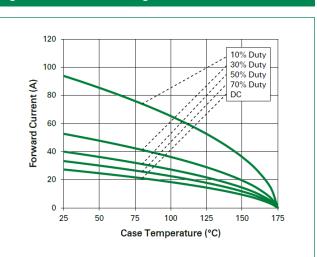


Figure 5: Capacitance vs. Reverse Voltage

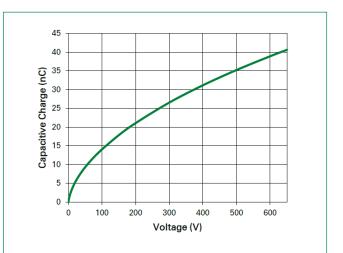


Figure 7: Stored Energy vs. Reverse Voltage

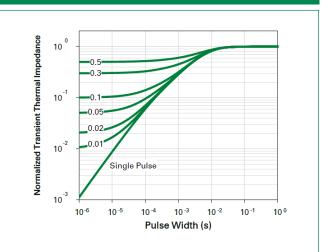


Figure 6: Capacitive Charge vs. Reverse Voltage

Figure 8: Transient Thermal Impedance

© 2019 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 10/29/19

Littelfuse Power

GEN2 SiC Schottky Diode LSIC2SD065A10A, 650V, 10Å, TO-220-2L

Symbol

Α

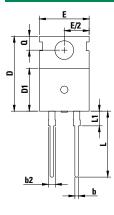
A1

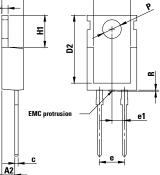
A2

b

Min

4.30

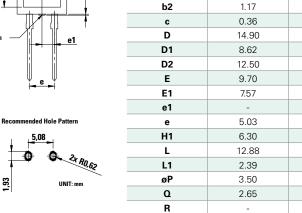

1.14


2.20

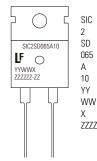
0.69

Dimensions-Package TO-220-2L

A1



E1


5,08

A

1,93

Part Numbering and Marking System

= SiC I	Diode
= Gen	2
= Scho	ottky Dic

-	JUI	ιστι	.кγ	DI	υu	e	
=	Vol	Itad	e l	Rat	in	al	6

- 650 V) = TO-220 Package (2 Lead)
- = Current Rating (10 A)
- = Year
- = Week
- = Special Code
- ZZZZZZ-ZZ = Lot Number

Packing Options						
Part Number	Marking	Packing Mode	M.O.Q			
LSIC2SD065A10A	SIC2SD065A10	Tube(50pcs)	1000			

Millimeters

Nom

4.45

1.27

-

-

-

-

-

-

-

10.18

7.61

2.54

5.08

6.55

13.50

-

3.84

-

-

Max

4.70

1.40

2.74

0.90

1.62

0.60

15.90

9.40

12.95

10.36

8.30

-

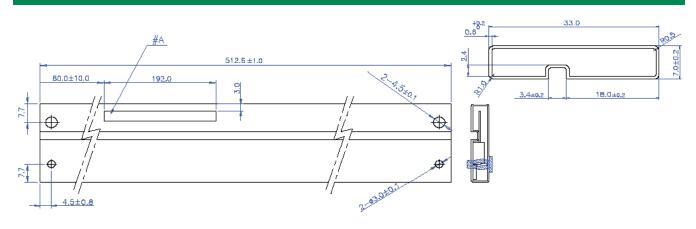
5.13

6.80

14.00

3.25

3.96


3.05

0.25

GEN2 SiC Schottky Diode LSIC2SD065A10A, 650V, 10A, TO-220-2L

Packing Specification (Tube for TO-220-2L)

[NOTE]

- 1. TUBE MATERIAL : PVC / PET (WITH ANTISTATIC COATING)
 - COLOR : TRANSPARENCY, RED, YELLO
 - MARKING #A : BLACK COLOR, LETTER STYLE : Arial
 - Tube Surface Resistance $:10^{6} \sim 10^{11} \Omega$ /square
 - ESD (Electro Static Discharge) : less than 100 [volts], 6 Months
 - CAMBAR : 1.5 MAX
- 2. PIN COLOR : GREEN (ONE PIN MUST BE INSERTED IN LEFT-SIDE OF "□ANTISTATIC~" AND ANOTHER PIN IS FREE.)

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, Components intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applicable Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products used in applicable Littelfuse as set forth in applicable Littelfuse as a set forth in applicable Littelfuse as a set forth in applicable Littelfuse as set forth in applicable Littelfuse as a set forth in applicable Littelfuse as set forth in applicable Littelfuse as a set forth in applicable L Conditions of Sale, unless otherwise agreed by Littelfuse. Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.